
Journal of Network and Computer Applications 34 (2011) 1113–1122
Contents lists available at ScienceDirect
Journal of Network and Computer Applications
1084-80

doi:10.1

� Corr

L.go S. L

E-m

dipietro
journal homepage: www.elsevier.com/locate/jnca
Secure virtualization for cloud computing
Flavio Lombardi a, Roberto Di Pietro b,c,�

a Consiglio Nazionale delle Ricerche, DCSPI-Sistemi Informativi, Piazzale Aldo Moro 7, 00187 Roma, Italy
b Universit �a di Roma Tre, Dipartimento di Matematica, L.go S. Leonardo Murialdo, 1 00149 Roma, Italy
c UNESCO Chair in Data Privacy, Universitat Rovira i Virgili, Tarragona, Spain
a r t i c l e i n f o

Article history:

Received 29 November 2009

Received in revised form

23 April 2010

Accepted 7 June 2010
Available online 22 June 2010

Keywords:

Security

Cloud computing

Virtualization technologies
45/$ - see front matter & 2010 Elsevier Ltd. A

016/j.jnca.2010.06.008

esponding author at: Universit �a di Roma Tre,

eonardo Murialdo, 1 00149 Roma, Italy. Tel.:

ail addresses: flavio.lombardi@cnr.it (F. Lomb

@mat.uniroma3.it, roberto.dipietro@urv.cat (
a b s t r a c t

Cloud computing adoption and diffusion are threatened by unresolved security issues that affect both

the cloud provider and the cloud user. In this paper, we show how virtualization can increase the

security of cloud computing, by protecting both the integrity of guest virtual machines and the cloud

infrastructure components. In particular, we propose a novel architecture, Advanced Cloud Protection

System (ACPS), aimed at guaranteeing increased security to cloud resources. ACPS can be deployed on

several cloud solutions and can effectively monitor the integrity of guest and infrastructure components

while remaining fully transparent to virtual machines and to cloud users. ACPS can locally react to

security breaches as well as notify a further security management layer of such events. A prototype of

our ACPS proposal is fully implemented on two current open source solutions: Eucalyptus and

OpenECP. The prototype is tested against effectiveness and performance. In particular: (a) effectiveness

is shown testing our prototype against attacks known in the literature; (b) performance evaluation of

the ACPS prototype is carried out under different types of workload. Results show that our proposal is

resilient against attacks and that the introduced overhead is small when compared to the provided

features.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Internet is on the edge of another revolution, where resources
are globally networked and can be easily shared. Cloud computing

is the main component of this paradigm, that renders the Internet
a large repository where resources are available to everyone as
services. In particular, cloud nodes are increasingly popular even
though unresolved security and privacy issues are slowing down
their adoption and success. Indeed, integrity, confidentiality, and
availability concerns are still open problems that call for effective
and efficient solutions. Cloud nodes are inherently more vulner-
able to cyber attacks than traditional solutions, given their size
and underlying service-related complexity—that brings an
unprecedented exposure to third parties of services and inter-
faces. In fact, the cloud ‘‘is’’ the Internet, with all the pros and cons
of this pervasive system. As a consequence, increased protection
of cloud internetworked nodes is a challenging task. It becomes
then crucial to recognize the possible threats and to establish
security processes to protect services and hosting platforms from
attacks.
ll rights reserved.

Dipartimento di Matematica,

+39 06 57338246.

ardi),

R. Di Pietro).
Cloud Computing already leverages virtualization for load
balancing via dynamic provisioning and migration of virtual
machines (VM or guest in the following) among physical nodes.
VMs on the Internet are exposed to many kinds of interactions
that virtualization technology can help filtering while assuring a
higher degree of security. In particular, virtualization can also be
used as a security component; for instance, to provide monitoring
of VMs, allowing easier management of the security of complex
cluster, server farms, and cloud computing infrastructures to cite
a few. However, virtualization technologies also create new
potential concerns with respect to security, as we will see in
Section 4.

Contributions: The goal of this paper is twofold: (a) to
investigate the security issues of cloud computing; (b) to provide
a solution to the above issues.

We analyzed cloud security issues and model, examined threats
and identified the main requirements of a protection system. In
particular, we developed an architecture framework, Advanced
Cloud Protection System (ACPS), to increase the security of cloud
nodes. ACPS is based on the results of KvmSec (Lombardi and
Di Pietro, 2009) and KvmSma (Lombardi and Di Pietro, 2010)
prototype security extensions of the Linux Kernel Virtual Machine
(KVM Qumranet, year), It is also inspired by the TCPS architecture
(Lombardi and Di Pietro, 2010). ACPS is a complete protection
system for clouds that transparently monitors cloud components
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Table 1
Comparison of features provided by ACPS, TCPS, KvmSma (KSma) and KvmSec

(KSec).

Feature KSec KSma TCPS ACPS

Semantic View N Y Y Y

Guest Component Y N N N

Transparency N Y Part. Full

Non-Blocking Y Y Y Y

SWADR N N N Y

Hot Recovery (by Replacement) N N N Y

Accountability N N N Y
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and interacts with local and remote parties to protect and to recover
from attacks.

In the following we show how ACPS can leverage full
virtualization to provide increased protection to actually deployed
cloud systems such as Eucalyptus (Nurmi et al., 2009) and
(Openecp, 2010) (also referred to as Enomalism Enomaly, 2009 in
the following). In fact, OpenECP is a fully open source code fork of
the previously open source Enomalism offer; as such, it shares the
same architecture and codebase. A prototype implementation is
presented. Its effectiveness and performance are tested. Results
indicate that our proposal is resilient against attacks and that the
introduced overhead is small—especially when compared to the
features provided.

One main outcome of our research is a framework that allows
virtualization-supported cloud protection across physical hosts
over the Internet.

Roadmap. The remainder of this document is organized as
follows: next section surveys related work. Section 3 provides
background information, while Section 4 classifies cloud security
issues. Section 5 describes ACPS requirements and architecture. In
Section 6 implementation details are provided, while effective-
ness and performance are discussed in Section 7. Finally, Section 8
draws some conclusions.
2. Related work

While privacy issues in clouds have been described in depth by
Pearson (2009), cloud security is less discussed in the literature
(Gu and Cheung, 2009). Some interesting security issues are
discussed in Siebenlist (2009), while an almost complete survey of
security in the context of cloud storage services is provided by
Cachin et al. (2009). An exhaustive cloud security risk assessment
has been recently presented by Enisa (2009). Also worth reading
is the survey on cloud computing presented in Armbrust et al.
(2009). These papers have been the starting points of our work
and we refer to them in terms of problems and terms definition.

A fundamental reference for our research is the work on
co-location (Ristenpart, 2009) by Ristenpart. This work shows that
it is possible to instantiate an increasing number of guest VMs
until one is placed co-resident with the target VM. Once
successfully achieved co-residence, attacks can theoretically
extract information from a target VM on the same machine. An
attacker might also actively trigger new victim instances exploit-
ing cloud auto-scaling systems. Ristenpart shows that it practical
to hire additional VMs whose launch can produce a high chance of
co-residence with the target VM. He also shows that determining
co-residence is quite simple.

Most current integrity monitoring and intrusion detection
solutions can be successfully applied to cloud computing.
Filesystem Integrity Tools and Intrusion Detection Systems such
as Tripwire (Kim and Spafford, 1994) and (AIDE) (AIDEteam, 2005)
can also be deployed in virtual machines, but are exposed to
attacks possibly coming from a malicious guest machine user.
Furthermore, when an attacker detects that the target machine is
in a virtual environment, it may attempt to break out of the
virtual environment through vulnerabilities (very rare at the time
of writing Secunia, 2009) in the Virtual Machine Monitor (VMM).
Most present approaches leverage VMM isolation properties to
secure VMs by leveraging various levels of virtual introspection.
Virtual introspection (Jiang et al., 2007) is a process that allows to
observe the state of a VM from the VMM. SecVisor (Seshadri et al.,
2007) Lares (Payne et al., 2008) and KVM-L4 (Peter et al., 2009), to
name a few, leverage virtualization to observe and monitor guest
kernel code integrity from a privileged VM or from the VMM.
Nickle (Riley et al., 2008) aims at detecting kernel rootkits by
monitoring the integrity of kernel code. However, Nickle does not
protect against kernel data attacks (Rhee et al., 2009), whereas our
solution does. Most proposals have limitations that prevent them
from being used in distributed computing scenarios (e.g.. SecVisor

only supports one guest per each host) or just do not consider the
special requirements or peculiarities of distributed systems; for
instance, KVM-L4 shares the same underlying technology as
Lombardi and Di Pietro (2009) but the additional context switch-
ing overhead in the 64-bit scenario, representing the vast majority
of cloud hosts, remains to be verified. Also worth citing are IBMon

(Ranadive et al., 2009), a monitoring utility using introspection for
asynchronous monitoring of virtualized network devices, and
LoGrid (Salza et al., 2006), an example of autonomic reaction
system.

In an effort to make nodes resilient against long-lasting
attacks, Self-Cleansing Intrusion Tolerance (SCIT) (Huang et al.,
2006) treats all servers as potentially compromised (since
undetected attacks are extremely dangerous over time). SCIT
restores servers from secure images on a regular basis. The
drawback of such a system is that it does not support long-lasting
sessions required by most cloud applications. Similarly, VM-FIT

(Distler et al., 2008) creates redundant server copies which can
periodically be refreshed to increase the resilience of the server.
Finally, Sousa et al. (2007) approach combines proactive recovery
with services that allow correct replicas to react and be recovered
when there is a sufficient probability that they have been compro-
mised. Along with the many advantages brought by virtualization,
there are additional technological challenges that virtualization
presents, which include an increase in the complexity of digital
forensics (Pollitt et al., 2008) investigations as well as questions
regarding the forensics boundaries of a system.

Finally, the same authors of this paper proposed Transparent
Cloud Protection System (TCPS)—appearing as a poster at SAC’10
(Lombardi and Di Pietro, 2010). That poster introduces some of the
scenarios and requirements that are also common to ACPS, however
they are only partly sketched in TCPS. In particular, ACPS and TCPS
share the positioning of the monitoring system and the requirement
that it has to be as much transparent as possible to guests. ACPS
extends and completes the architecture just sketched in TCPS. For
instance, ACPS enjoys unique features, such as the SWADR approach,
the increased decoupling of action and reaction, the increased
immunity and integrity of the platform—as well as the integration
with real-world architecture—and the support for accountability. All
these new relevant features, as well as extensive experiments on
both security and performance, make the present proposal a novel
contribution (see also Table 1).
3. Background

A cloud (Vaquero et al., 2009) is a pool of virtualized resources
across the Internet that follows a pay-per-use model and can be
dynamically reconfigured to satisfy user requests via on-the-fly
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provisioning/deprovisioning of virtual machines. Cloud comput-
ing is a service model for IT provisioning, often based on
virtualization and distributed computing technologies. Within
the cloud paradigm, concepts such as virtualization, distributed
computing and utility computing are applied (Lenk et al., 2009).
Cloud computing approach to distributed computing shares many
ideas with grid computing, but these two differ in target, in focus,
and in the implementation technologies (Foster et al., 2009). On
the one hand, with respect to a grid, the cloud user has less
control over the location of data and computation. On the other
hand, cloud computing management costs are usually much
lower and management is less cumbersome. In the following we
will also refer to the cloud infrastructure components as
middleware.

Cloud services are available at different layers (see the n-as-a-
Service or naaS layers in Fig. 1): dSaaS The data Storage as a
Service delivering basic storage capability over the network; IaaS

The Infrastructure as a Service layer providing bare virtual hard-
ware with no software stack; PaaS The Platform as a Service layer
providing a virtualized servers, OS, and applications; SaaS The
Software as a Service layer providing access to software over
the Internet as a service.

In this work, efforts have been focused on the ‘‘lowest’’
computational layer (i.e. IaaS) since we can more effectively
provide a security foundation on top of which more secure
services can be offered. Most existing cloud computing systems
are proprietary (even though APIs are open and well-known) and
as such do not allow modifications, enhancements or integration
with other systems for research purposes. This is the reason why
we have chosen Eucalyptus and OpenECP, both open source cloud
implementations, for integration with our architecture. In the
following, even though we will focus on the security issues of
those two platforms, most considerations will be general enough
to be valid for other platforms as well.
CP

SLA

SP SI1 SI2

HP1 HP2 HP3

Fig. 2. Cloud service model components: Cloud Provider (CP), Hosting Platform

(HP), Service Level Agreement (SLA), Service Provider (SP), Service Instance (SI),

Service User (SU).
4. Cloud security issues

One of the key issues of cloud computing (see Fig. 1) is loss of
control. As a first example, the service user (SU) does not know
where exactly its data is stored and processed in the cloud.
Computation and data are mobile and can be migrated to systems
the SU cannot directly control. Over the Internet, data is free to
cross international borders and this can expose to further security
threats. A second example of loss of control is that the cloud
provider (CP) gets paid for running a service he does not know the
details of. This is the dark side of the ‘‘Infrastructure as a Service’’
model, but also of other ‘‘as a Service’’ approaches. To date, misuse
problems tend to be regulated by a service contract, where such
an agreement should be enforced and controlled by monitoring
tools (Haeberlen, 2009).

Some of the security issues of a cloud are (Foster et al., 2009):

SEI1 Privileged user access: access to sensitive outsourced
data has to be limited to a subset of privileged users
(to mitigate the risk of abuse of high privilege roles);

SEI2 Data segregation: one instance of customer data has to
be fully segregated from other customer data;

SEI3 Privacy: exposure of sensitive information stored on the
platforms implies legal liability and loss of reputation;

SEI4 Bug Exploitation: an attacker can exploit a software bug
to steal valuable data or to take over resources and allow
for further attacks;

SEI5 Recovery: the cloud provider has to provide an efficient
replication and recovery mechanism to restore services,
should a disaster occur;

SEI6 Accountability: even though cloud services are difficult
to trace for accountability purposes, in some cases this is
a mandatory application requirement.

With respect to the latter point, accountability can increase
security and reduce risks for both the service user and the service
provider. A trade-off between privacy and accountability exists,
since the latter produces a record of actions that can be examined
by a third party when something goes wrong. Such an investiga-
tion might show faulty components or internal cloud resource
configuration details. This way, a cloud customer might be able to
learn information about the internal structure of the cloud that
could be used to perform an attack. A possible solution could be
the use of obfuscation and privacy-preserving techniques to limit
the information the VM exposes to the cloud (Bethencourt et al.,
2009). Anyway, current technology cannot prevent a VMM from
accessing guest raw memory. This leaves open confidentiality
issues with respect to the service provider (or with respect to an
attacker if he compromises the hosting platform).

4.1. Cloud security model

Fig. 2 illustrates the scenario we are concerned with in this
paper. A service provider (SP) runs one or more service instances
(SI) on the cloud, which can be accessed by a group of final service
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users (SU). For this purpose, the SP hires resources from the cloud
provider (CP). It is worth noticing that the SU and the SP do not
have any physical control over cloud machines, whose status
cannot be observed. The SU and the CP enter into a Service Level
Agreement that describes how the cloud is going to run service SI.

Possible attacks against cloud systems can be classified as
follows (see also Smith et al., 2006):

CAT1 Resource attacks against CPs;
CAT2 Resource attacks against SPs;
CAT3 Data attacks against CPs;
CAT4 Data attacks against SPs;
CAT5 Data attacks against SUs.

Resource attacks (CAT1-CAT2) regard the misuse of resources,
such as stealing virtual resources to mount a large scale botnet
attack. Data attacks (CAT3-CAT4) steal or modify service or node
configuration data (that can be used later to perform an attack).
Data attacks against service users (CAT5) can lead to leakage of
sensitive data. CAT1 and CAT3 attack classes involve an attack to
cloud infrastructure components. Virtualization technologies
underlying cloud computing infrastructure can pose security
challenges themselves (Secunia, 2009). In addition, cloud comput-
ing middleware potentially allows some novel attacks that have
not been identified yet. We will later see how ACPS deals with
such threats.
5. Advanced cloud protection system

The proposed Advanced Cloud Protection System (ACPS) is
intended to actively protect the integrity of the guest VMs and of
the distributed computing middleware by allowing the host to
monitor guest virtual machines and infrastructure components.
Our proposal extends the KvmSec (Lombardi and Di Pietro, 2009)
approach to protect monitored components against intruders and
attacks such as worms and viruses.
ACPS is a purely host side architecture leveraging virtual
introspection (Hay and Nance, 2008). This allows: to deploy any
guest virtual appliance ‘‘as it is’’; to enforce some form of
accountability on guest activity without being noticed by an
attacker located on the guest. This latter feature is provided being
the protection system hard to detect, as it is immune to timing
analysis attacks—it is completely asynchronous. In the following
we describe the ACPS threat model and requirements for different
distributed computing platforms. We then give implementation
details as well as an evaluation of the ACPS effectiveness and
performance, having provided an implementation of the designed
cloud computing protection architecture.
5.1. Threat model

In our model we can rely on host integrity, since we assume
the host to be part of the Trusted Computing Base (TCB)
(Hohmuth et al., 2004). When the VM image is provided by a
trusted entity, guest integrity is assumed at setup time but it is
subject to threats as soon as the VM is deployed and exposed to
the network. Indeed, guests can be the target of possible kinds of
cyber attacks and intrusions such as viruses, code injection, and
buffer overflow to cite a few. In case the guest image is provided
by the user, VM trustfulness cannot be guaranteed and guest
actions have to be monitored to trace possibly malicious
activities. In our model, attackers can be cloud users (SP) or
cloud applications users (SU), whereas victims can be the
providers running services in the cloud (CAT2-CAT4), the cloud
infrastructure itself (CAT1-CAT3) or other users (CAT5).
A traditional threat is when an attacker attempts to perform
remote exploitation of software vulnerabilities in the guest
system (CAT2). Some attacks are made possible by exploiting
cloud services (CAT1-CAT2), since a malicious party can legally
hire other instances within the cloud and, as previously high-
lighted, it can manage to learn confidential information (CAT5).
Other attacks are also possible such as Denial of Service
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(CAT1-CAT2), estimating traffic rates, and keystroke timing
(CAT2-CAT5) (see Ristenpart, 2009).
PR
PR
PR
5.2. Requirements

We identified the core set of requirements to be met by a
security monitoring system for clouds are the following (see also
Lombardi and Di Pietro, 2009; Lombardi and Di Pietro, 2010):

REQ1 Effectiveness: the system should be able to detect most
kinds of attacks and integrity violations.

REQ2 Precision: the system should be able to (ideally) avoid
false-positives; that is, mistakenly detecting malware
attacks where authorized activities are taking place.

REQ3 Transparency: the system should minimize visibility
from VMs; that is: SP, SU, and potential intruders should
not be able to detect the presence of the monitoring
system.

REQ4 Non-subvertability: the host system, cloud infrastruc-
ture and the sibling VMs should be protected from
attacks proceeding from a compromised guest and it
should not be possible to disable or alter the monitoring
system itself.

REQ5 Deployability: the system should be deployable on the
vast majority of available cloud middleware and HW/SW
configurations.

REQ6 Dynamic Reaction: the system should detect an intru-
sion attempt over a cloud component and, if required by
the security policy, it should take appropriate actions
against the attempt and against the compromised guest
and/or notify remote middleware security-management
components.

REQ7 Accountability: the system should not interfere with
cloud and cloud application actions, but collect data and
snapshots to enforce accountability policies.

There is a trade-off between transparency and dynamic
reaction; we solved this problem by letting the set of possible
ACPS reactions be a subset of regular guest maintenance
capabilities, e.g. halting the guest, restarting it from a fresh
image, and migrating the VM instance. The above actions are,
from the point of view of the SU or SP, virtually indistinguishable
from regular load-balance based VM operations.
5.3. Proposed approach

We monitor key components that would be targeted or
affected by attacks in order to protect the VMs and the cloud
infrastructure. By either actively or passively monitoring key
kernel and middleware components we are able to detect any
possible modification to kernel data and code, thus guaranteeing
that kernel and middleware integrity have not been compro-
mised. Furthermore, in order to monitor cloud entry points, we
check behavior and integrity of cloud components via logging and
periodic checksum verification of executable files and libraries.
A further objective we want to achieve, especially when the guest
image is not trusted by the cloud provider, is ensuring that an
attacker-run application cannot detect that an external intrusion
detection system is in place. Note that, as for introspection
techniques, it is still not clear to what extent they can be detected
by the target virtual machine. In fact, the presence of a monitoring
system can potentially be detected through measurement of the
time it takes for certain function calls to execute. Leveraging this
observation, our monitoring system acts in a way that we define
SWADR—synchronous warning—asynchronous detection and
response. In particular, ACPS can provide protection:
T1 from attacks coming from outside the cloud;
T2 from attacks coming from sibling VMs;
T3 from attacks coming from VMs.
The high level description of ACPS combined with Eucalyptus,
and ACPS combined with OpenECP architectures, are shown in
Figs. 4 and 5, respectively, where potentially dangerous data flows
are depicted in continuous lines and monitoring data flows are
depicted in dashed lines. All ACPS modules are located on the
Host. ACPS makes use of Qemu (Bellard, 2005) to access the guest.
Suspicious guest activities (e.g. system_call invocation) can be
noticed by the Interceptor and recorded by the Warning Recorder

into the Warning Pool, where the potential threat will be
evaluated by the Evaluator component. The Interceptor has been
conceived not to block or deny any system call, in order to prevent
the monitoring system from being detected: in SWADR mode, the
timing attack is neutralized. Indeed, the evaluation components
(Evaluator and Hasher) are always active—see Fig. 3—running and
continuously performing security checks. In fact, the Evaluator

and the Hasher are active and running even when the Warning

Pool is empty. In this case, the purpose of the Warning Pool is
mainly to cache warnings in order not to choke the evaluation
component. The Warning Pool also allows setting priorities with
respect to the order of evaluation. This guarantees increased
invisibility, even though a large number of warnings might
potentially delay decision and reaction by the Actuator. With
respect to such an issue, an increasing rate of incoming warnings
could be treated as a security threat on its own. It is true that, the
SWADR asynchronous, non-blocking approach can potentially
allow the attacker to perform some—limited in time—

tampering with the target system. It is also true that in order to
perform modifications to the guest system, the attacker must
have already taken control of such system. Furthermore, the
undetectability of the monitoring system allows malware
behavior to be observed in a honeypot-fashion.

ACPS enjoys the following features: it is transparent to guest
machines (even malicious or untrusted ones); it supports full
virtualization (Perez et al., 2008), which renders the system less
detectable on guest side; and, it can be deployed on most x86 and
x86_64-based distributed cloud computing platforms.

ACPS is significantly different from the security monitoring
systems presented in KvmSec (Lombardi and Di Pietro, 2009) and
KvmSma (Lombardi and Di Pietro, 2010) or sketched in TCPS

(Lombardi and Di Pietro, 2010); some of the main differences
between KvmSec, KvmSma, TCPS, and ACPS are shown in Table 1.
Most important, ACPS is completely transparent to guest
machines, features SWADR mode (see REQ3), Warning Pools and
enables hot recovery by replacement of a compromised service as
well as resuming execution from the lates secure snapshot (see
REQ6). ACPS is difficult to compromise even from an (already)
compromised or untrusted virtual machine (see CAT1 and CAT3),
while it can transparently inspect and analyze data inside guests.
ACPS supports accountability (see REQ7), as discussed later in this
section, and allows tracing and recording of guest status and data
via snapshots, thus supporting forensics analysis. Furthermore, it
has been fully integrated within existing cloud middleware. ACPS,
like TCPS, is entirely located on the host machine (see REQ3).
In ACPS each Virtual Machine uses its own private memory area,
so it is totally independent from other VMs (see REQ4 and CAT4).

In ACPS, the host-side database Checksum DB contains
computed checksums for selected critical host infrastructure
and guest kernel code, data, and files. The runtime Warning



HOSTING PLATFORM GUEST VM

Warning 
Recorder 

Detector 
(Daemon)

Kernel Space

User Space

WQ

Interceptor

Hasher

Kvm

Qemu

Actuator
Kernel Space

User Space

Malicious
Application

Kernel Code

Selected
Kernel Data

Libvirt and VM
management

Turbogears

GUEST VM

Kernel Space

User Space

Regular
Application

Kernel Code

Selected
Kernel Data

MySQL

Middleware 
Integrity 
Monitor

Checksum
DB

Fig. 5. ACPS (components in gray) combined with OpenECP—Architecture.

HOSTING PLATFORMs GUEST VM

Warning 
Recorder 

Detector 
(Daemon)

Kernel Space

User Space

WQ

Interceptor

Hasher

Kvm

Qemu

Actuator
Kernel Space

User Space

Malicious
Application

Kernel Code

Selected
Kernel Data

GUEST VM

Kernel Space

User Space

Regular
Application

Kernel Code

Selected
Kernel Data

Storage Controller

Node Controller

Cluster Controller

Cloud Controller

Middleware 
Integrity 
Monitor

Checksum
DB

Fig. 4. ACPS (components in gray) combined with Eucalyptus—Architecture.

F. Lombardi, R. Di Pietro / Journal of Network and Computer Applications 34 (2011) 1113–11221118
Recorder daemon can asynchronously recompute hash values
for such monitored objects and can file warnings towards the
Evaluator. The Evaluator daemon examines such warnings and
evaluates (see REQ1-REQ2) whether the security of the system
has been endangered. In such a case the Actuator daemon is
invoked to act according to a specified security policy (REQ6).
Consequently, ACPS can locally react to security breaches or notify
the security management layer for such components of the
occurred events. ACPS can also replace a compromised server
on-the-fly by restoring that VM from a clean backup image
(see Distler et al., 2008). To avoid false positives as much as
possible (REQ2), an administrator or the Cloud Controller
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component can notify ACPS of the new components’ checksums.
ACPS is integrated in the virtualization software and leverages
hardware virtualization support to monitor the integrity of the
guest and middleware components by performing a checksum of
such objects. It is worth noting that no system_call is ever blocked
or delayed by ACPS to check for permission violation and the kind
of reaction our monitoring system can perform (freezing/halting/
restarting the guest VM) is virtually indistinguishable from
normal system maintenance tasks. Furthermore, the Interceptor

and Warning Recorder can trace events, actions and the actors who
performed them. These data, combined with Checksum DB data,
can be used for accountability purposes (REQ7) (Haeberlen, 2009).
This provides the proposed architecture with the necessary
support to implement external secure event logging and account-
ability tools.
Actuatorlibvirt

mysql

VM1 VM2 VMn
Virtual
Socket

Virtual
Socket

Virtual
Socket
6. Implementation

We implemented ACPS over Eucalyptus and OpenECP (REQ5).
Eucalyptus high-level system components are implemented as
webservices. Eucalyptus (Nurmi et al., 2009) is composed of: a
Node Controller (NC) that controls the execution, inspection, and
termination of VM instances on the host where it runs; a Cluster
Controller (CC) that gathers information about VM and schedules
VM execution on specific node controllers; further, it manages
virtual instance networks; a Storage Controller (SC)—Walrus—

that is, a storage service providing a mechanism for storing and
accessing VM images and user data; a Cloud Controller (CLC), the
webservices entry point for users and administrators that makes
high level scheduling decisions.

A more detailed description of how ACPS integrates with the
Eucalyptus component is reported in Fig. 6. On Eucalyptus, ACPS
can be deployed with the Cloud Controller, the Cluster Controller
and, most importantly, the Node Controller. The NC runs on every
node hosting VM instances. We especially monitor NC activity and
integrity, since this is the key component for this cloud
implementation (Rellermeyer et al., 2009). In fact, as shown in
Fig. 6, in case an attack or a potentially dangerous alteration is
detected, the actuator can change the NC, Libvirt, and Iptables
configuration in order to prevent further damages. The possible
reactions include migrating the guests that did not raise any
warning (clean guests) to other hosts, while disabling the
suspicious host node itself.

OpenECP, like its proprietary Enomalism (Enomaly, 2009)
sibling, provisions and manages resources by leveraging Turbo-
gears, Python, and the Libvirt library (RedHat, 2007). These are
the additional infrastructure resources we need to monitor the
integrity of. The components that have to be monitored are
Actuator

Middleware 
Integrity 
Monitor

VM1 VM2 VMn

WebNode Controller
libvirt

Virtual
Socket

Virtual
Socket

Virtual
Socket

Iptables

Fig. 6. ACPS (components in gray) combined with Eucalyptus—detail.
Python, Libvirt and Mysql processes, executable files and libraries,
as well as configuration files. Turbogears front-end components
need to be especially monitored, since they are particularly
exposed to the network. Such monitoring provides integrity
protection for both front-end and back-end systems (against
CAT1). Enomalism integration details are shown in Fig. 7. In
particular, in case an attack or a potentially dangerous alteration
is detected, the actuator can change the Mysql, Turbogears, Libvirt
and Iptables configuration in order to prevent further damages.
The possible reactions include filtering out selected web requests,
migrating clean guests to other hosts and disabling the suspicious
host node itself.
7. Effectiveness—ACPS under attack

In this section we show how our proposal copes with attacks
the cloud can be subject to in real environments. In particular, we
report on the practical experiments performed to assess the
resilience of the proposed architecture and also provide discus-
sion on how the key requirements set in previous sections are met
by our proposal.

The detection capabilities (see Table 3) of our system are
assessed against known attack techniques (see Table 2). However,
since source code for many attacks is not publicly available, we
performed our test by simulating the attack steps.

As shown earlier, we can partition attacks into 5 categories,
ranging from CAT1 to CAT5. ACPS has been proven to detect and
to react to attacks belonging to the above mentioned categories,
in a way that is summarized in Table 3. In particular, we took from
the current literature some relevant attacks that actual networked
architectures can be subject to (Huang et al., 2007; Ristenpart,
2009; Costa et al., 2005) and we showed the degree of added
protection provided by ACPS to guests and VMs when the system
is exposed to such attacks.

In particular, we simulated an attack of type CAT1 by
exploiting host service vulnerabilities (see Debian ssh Debian,
Middleware 
Integrity 
Monitor

turbogears−
based frontend Web

Ip
tables

Fig. 7. ACPS (components in gray) combined with OpenECP—detail.

Table 2
Attacks instantiation.

Category Implemented Attack

CAT1 Apache vuln. (Eucalyptus)/ssh

Python vuln. (OpenECP)

CAT2 Sebek rootkit

CAT3 network probing

CAT4 colocation, detection

CAT5 colocation, keystroke timing



Table 3
ACPS Detection/Reaction capabilities.

Attack Technique Detection reason Implemented Reaction

Apache/Python/ssh process footprint service migration/restart

Sebek altered sys_call

table

clean VM restart

Process Hiding tasklist navigation clean VM restart

colocation, network

probing

Iptables

monitoring

Silently filter/drop network

packets
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2008 and Apache vulnerabilities CVE, 2008). In this case ACPS
monitors the Apache process behavior and memory footprint and
notices the abnormal memory usage and connection attempts.
Once the attack is detected, ACPS restarts the compromised
service from a verified executable and re-establishes its config-
uration files.

We implemented an attack of type CAT2 by inserting a Sebek
rootkit (Honeynet Project. Sebek, 2003) in a guest VM. Sebek is a
kernel module that hides its presence and intercepts filesystem
and network activity. It does so by altering the syscall table in
order to change the execution flow and to execute malicious code.
Here ACPS detects both the alteration of the syscall table and the
change in the checksum of kernel files on virtual storage.

We also implemented an attack of type CAT4 using a kernel
data attack as described in (Rhee et al., 2009). In particular, given
that network cards are emulated by the underlying Qemu

software, guests are protected by ACPS from the Lying Network
Card attack approach. In this context, we implemented the
process hiding approach that allows the attacker to run tasks
without having them appearing in the list of processes. This attack
has been accomplished using a dynamic data attack leveraging /
dev/kmem to manipulate the task list structure. ACPS detects the
alteration when, by navigating the kernel scheduler task list, it
discovers that additional hidden structures are present. As a
reaction, ACPS restarts the guest from a clean VM disk image.

Finally, we implemented attacks of type CAT3 and CAT5 by
using the techniques cited by Ristenpart in Ristenpart (2009).
First of all, both external (outside the cloud) and internal (from
sibling VMs) network probing via port scanning is intercepted by
Iptables rules that raise an alarm to the Warning Recorder (WR).
As regards keystroke timing (Ristenpart, 2009), given that the
attacker resorts to co-residence load measurements to analyze the
time between keystrokes and collect sensitive information, ACPS
renders such attack less feasible. Indeed, having ACPS running on
the CPU under attack makes times measurement much harder for
the attacker.
7.1. Anatomy of attack and reaction

In the following, we describe the details of a sample attack we
performed and the reaction we obtained from ACPS (host and
guest systems’ integrity is assumed granted at time t0):
Table 4
Host test environment.
1.
 the attacker (ATT) exploits a ssh vulnerability (Debian, 2008)

or a weak password to get access to an account;

Feature host A host B
2.
 ACPS Iptables logs to the Warning Recorder (WR), the number

and targets of ssh connection attempts.

CPU Model Athlon 64 4400+ Turion 64 RM-72

Cores 2 2
3.
Ram 4096 4096
ATT then performs a symbolic link privilege escalation attack
(Johnston, 2009) to gain root privileges;
Host OS Ubuntu 8.10 (O.ECP) Ubuntu 8.10 (O.ECP)
4.
 ATT patches critical kernel syscall code;

Ubuntu 9.10 (Eucal.) Ubuntu 9.10 (Eucal.)
5.
Kernel Linux 2.6.30 Linux 2.6.30

VMM Kvm 88 Kvm 88
ACPS Interceptor notices the operation on the kernel object
and files and records such potentially dangerous operations in
the WR;
6.
 ACPS Evaluator fetches warnings issued by the Warning

Recorder and checks for the integrity of affected parts by
comparing checksums;
7.
 when the alteration is detected an alert is issued to the remote
security-management component; furthermore the VM is
stopped and re-initiated (see REQ6).

The ACPS Evaluator can be configured to react (e.g. launching a
service restart) when the desired number of attack clues have
been collected. The increased security provided by this approach
must be balanced by the possible increase of both service
downtime (DoS) and computing resources usage—that arise in
case of false positives.

7.2. Performance

In this section we present the results of the experiments aimed
at evaluating ACPS performance when implemented over current
cloud solutions. The hardware/software configuration adopted for
such tests is depicted in Table 4. The guest operating systems
were �86 Centos 5.2 leveraging 1 virtual CPU and 1 GB RAM.
Hardware virtualization was enabled on the hosts. Guests run
32-bit OSes whereas hosts run 64-bit OSes. Guest virtual disk
made use of an image file on the hosts.

We tested the performance of our solution under three
different types of workload:
1.
 CPU-intensive;

2.
 Mixed workload;

3.
 I/O intensive.
In detail, we provisioned an Eucalyptus and an OpenECP guest and
measured the time it takes such Eucalyptus and OpenECP guests
to perform three different kinds of operations: mp3 encoding of a
wav file (CPU-intensive); vanilla 2.6.30 Linux kernel compilation
(mixed workload); and, dd of a large file (1 GB) to a disk partition
(I/O intensive).

Results are reported in Fig. 8 where bars represent execution
times normalized with respect to the same test executed on a
regular Kvm guest machine on the same hosts. Values are
averaged over the tested CPUs and show that the overhead
introduced by ACPS is quite small. There is a small performance
loss due to the additional integrity checks ACPS performs on cloud
middleware. The differences between Enomalism and Eucalyptus
results can be explained by the difference in the number and
complexity of the components of the two. This benchmarks
helped us to quantify the actual real-world application overhead
introduced by the additional asynchronous monitoring compo-
nents. For this purpose, bars have to be compared pairwise,
the left bar representing performance without ACPS, whereas the
right one represents performance with ACPS active. Indeed, the
impact of ACPS on the performance of current cloud solutions is
quite limited, given that the maximum performance loss is under
6%. In particular, for the CPU-intensive test it can be as low as 3%.



Fig. 8. ACPS execution times (normalized w.r.t. Kvm)—first test round. Fig. 9. ACPS performance comparison (normalized w.r.t. Kvm)—second test

round.
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This result is not surprising since in the SWADR approach the
evaluation is run as a low priority process and it is spread over
time, thus leaving the CPU resources free for the most part.
A slightly more complex result is obtained when looking at the
mixed workload and the I/O intensive workload results. This is
probably due to the increased number of active ACPS interactions
with filesystem activities. However, the impact of ACPS on the
performance of these types of workload never exceeds 6% and, on
average, provided results are quite interesting.

We then performed a further series of tests to collect more
detailed performance measurements, with a special interest in I/O
subsystems. In particular, the following selected tests from the
well-known Unixbench (Smith et al., year) test suite were
executed:
1.
 Execl: this test measures the number of execl() function calls
that can be performed in one second. Execl is aimed at
replacing the current process image with the new one; hence,
this operation stresses memory I/O performance.
2.
 Pipe: this test measures the number of pipe-writes (512 bytes)
a process successfully performs in one second. It is an
indication of how fast the process is in performing I/O
activities.
3.
 Fork: this test measures the number of times a fork() call can
be invoked per unit of time. This test is an important indicator
of overall performance.

Results are reported in Fig. 9. As above, the comparison has to be
carried out pairwise with respect to columns. Bars represent the
number of executed operations, hence a higher bar means a better
performance. This benchmarks helped us to quantify the specific-
operation performance overhead due to ACPS. The good news is
that performance loss due to the additional integrity checks ACPS
performs is less than 6% in any test. More in detail, in this case the
performance for the two cloud computing environments is very
similar, as expected, to the plain KVM guest. The reason is that
the cloud computing infrastructure only indirectly affects the
execution of such low-level operations, whose execution depends
on operating system configuration and security-related checks
(even though these latter ones cannot be distinguished from
normal workload). ACPS activity mostly affects I/O performance
(see Pipe throughput results affected by up to 6% performance
loss) whereas the fork experiment performance loss is less than
4%. Such a difference can be due to the interaction with the ACPS
interception components.

Results show that there is a margin of improvement for the
I/O monitoring operations. This margin of improvement can be
explained by the fact that the implemented I/O monitoring is not
fully mature. Indeed, it requires extra interaction with the I/O
subsystem that could be reduced in future implementations of the
ACPS framework. Overall, these first results are interesting—due
to the generally low overhead introduced—, and encourage us to
further investigation aimed at leveraging the improvement
margin previously highlighted. Finally, it is worth noticing that
even though overall performance is degraded by the monitoring
system itself, such performance penalty cannot be distinguished
by the attacker from regular CPU load, since the system_call
timing difference between protected and unprotected configura-
tions is constantly within the 3%–6% range, which is virtually
indistinguishable from the performance loss due to regular task
operations.
8. Conclusion

In this paper, we have provided several contributions to secure
clouds via virtualization. First, we have proposed a novel
advanced architecture (ACPS) for cloud protection that can
monitor both guest and middleware integrity and protect them
from most kinds of attack while remaining fully transparent to the
service user and to the service provider; ACPS has been tailored
and deployed onto different cloud implementations and has been
proven able to locally react to security breaches and capable of
notifying the security management layer of such an occurrence.
Second, the proposed architecture has been implemented entirely
on current open source solutions and both protection effective-
ness and performance results have been collected and analyzed.
Results show that the proposed approach is effective and
introduces just a small performance penalty.
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