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Abstract

There is no doubt that the publication of the 1988rnal of Applied Polymer Science paper of
J.L.White and A.B.Metzner was an important landmank constitutive modelling, with important
consequences in process modelling and relatedfield

The paper appeared after a period of research iBrothat emphasised the need for ‘generality’ in
constitutive modelling. As important as such stadiere at the time, the resulting constitutive ¢éiqua
were too complex to be used in ‘earthy’ practidealogical problems of the sort encountered in ggec
modelling.

So, the 1958roc Roy Soc paper of J.G.Oldroyd and, more particularly, theitd/Metzner 1963 paper
were timely additions to the literature, especidtly those working in practical fields such as podr
processing. The original White-Metzner model hadistitutive equations of the form:

Oy =~ POy + Ty,

O

T +%Tik =2nd, ,

whereagi is the stress tensor, p is an arbitrary isotrgpessure (for incompressible fluid®) is
the Kronecker delta and the overscore triangle @snthe upper convective time derivative
introduced by Oldroyd in his seminal 1950 paperoAginally introducedn was ‘a function of the
invariants of stress matrix’ and G was ‘a constaatlulus’.

Various simple modifications to the original WhNgetzner model began to appear in the
rheological literature and the current authors heaeently carried out simulations for what we
might call ‘the Generalized White Metzner modehig has equations of state of the form:

O
Ty +ATy =274y,

whereA andn are now functions difi, andlll3, the second and third invariants of the rate-cirst
tensor.

We shall trace the evolution of such an equaticaying particular attention to important
contributions by Debbaut et al. in 1988.

The remainder of the presentation will illustra@whvarious forms of the Generalized White-
Metzner model can be used to explain, amongst dkivegs, the competing influences of normal
stress differences and extensional viscosity in esmomplex flows of importance in process
modelling.



1. Introduction

In rheology, the twenty five years following thec6ad World War were noted above all for
advances in theoretical rheology, particularly ¢dasve modelling, and several innovative papers
appeared in that period. The names of J.G. Oldr&8, Rivlin, J.L. Ericksen, A.E. Green, M.
Reiner, B.D. Coleman and W. Noll in particular asssociated with the most important
contributions (see, for example, Tanner and Walt668).

It soon became apparent that the search for coengéaterality (as is provided, for example, by
the Navier-Stokes equations for a Newtonian fllg) to constitutive equations of prohibitive
complexity, except in the case of some simple flawsonsequence, rheologists, particularly those
involved in process modelling, sought simplgoroximate equations with a predictive capability.
This resulted in the appearance of a plethora abtiitive equations, many of which had their
faithful adherents and supporters, although it niestsaid that the popularity of a given simple
constitutive model has often been ephemeral. Thseiwation cannot be levelled at the so-called
White-Metzner model, which appeared in 1963 argtiisbeing used in numerical simulations for
complex viscoelastic flows today. Indeed, the aurauthors have found the use of variants of the
White-Metzner model to be extremely useful in sameent computational studies (Walters et al.
2009).

In their original paper, White and Metzner (1968)pmsed a constitutive equation, which we
can write in the form:

Oy =~ POy + Ty, (1)

T +%Tik =2nd, , (2

whereagj is the stress tensor, p is an arbitrary isotrgpessure (for incompressible fluid®) is
the Kronecker delta and the overscore triangle @snthe upper convective time derivative
introduced by Oldroyd in his seminal 1950 paped(@yd, 1950). As originally introduced, was

‘a function of the invariants of stress matrix’ aBdvas ‘a constant modulus’.

We note that it is customary to writen/G and to defin@ as the relaxation time.

For a steady simple shear flow with constant shatey, the model defined by (1) and (2)
predicts the following rheometrical functions:

a=ny,

2 3
Nl:20’ N, =0, 3)
G

where g is the shear stress and Bnd N are the first and second normal stress differences
respectively.

N,=0 corresponds to the so-called Weissenberg hypisthehich was very much in vogue in
1963 when White and Metzner wrote their paper. 8gbent research has shown that, for many
polymeric liquids, N is negative and much smaller than [¢f. Barnes et al. 1989). So, the
conclusion reached by White and Metzner that “neggierimental measurements point to either the
predicted equality or to a near equalitytgfandtss” is still valid'.

Hence, thezero second normal stress difference is not taken ta b&jor disadvantage of the
White-Metzner model. Indeed, the so-called Oldr&ydiodel, which has been so extensively used
in computational rheology, has the same prediction.

" In modern notation, N To5- Ts3



In assessing the relationship betweenaNd o implied in (3), White and Metzner (1963)
concluded that it worked reasonably wiel some polymeric systems (like a high molecularght
polystyrene solution in toluene) but not so well déhers (e.g. a low molecular weight polystyrene
solution). Of course, for the latter, this simpliggested relaxing the constancy of G and writing

Ty ATy =27 dy, 4)

with A andn as independent functions of the invariants of stress matrix (tensor) [see, for
example, Baid and Metzner (1977), Agrawal et @7{D)].

In their original paper, White and Metzner workedlhwnvariants of the stress tensor, but they
also suggested that invariants of the rate-of+stiensor could be used instead. Indeed, as thelmode
has been introduced in standard text books andagmglby others in process modelling, the most
common expression of the White-Metzner model ingslv andn being functions of the second
invariant of the rate-of-strain tensor:

1
I, ==tr(d? 5
o =5t(d?) (5)
For incompressible fluids, the first invariant exa and the third invariant, defined by
I, =det(d), (6)

is zero in two-dimensional flows, which presumababtgounts for the early restriction to the second

invariant of the rate-of-strain tensor. Howevemsohave ‘kept the door open’ to a dependence on
I113. For example, in their influential text, Bird dt £1987) comment: “There are of course other

ways in which invariants could be introduced inte tmodel. There is no reason, other than

preserving simplicity, to include the invariditof dx but not Ill3 in the model.”

As a result of these developments and suggestiamsow write down what we can readily call
the ‘Generalised White-Metzner model’:

|
Ty + ATy =27 dy (7)
whereA andn are functions ofl, andllls.
Such a model allows us to:

(i) Choose the dependencerpbnll, so as to match the experimental shear-viscosity fba any
polymeric liquid of interest.

(i) Choose the dependenceXobnll, so as to match the first normal stress differefata for the
polymeric liquid.

(i) Choose the dependence ofandn on the third invariant in such a manner as to matcy
extensional viscosity /7. data which may be available. We shall give exampfdabe usefulness of
this dependence dhlzin later sections.

(iv) As we have already notedy®0 for the model.

() - (iv) are some of the reasons for the contchg®pularity of the White-Metzner models in
process modelling and similar studies, some fosittyyears after the publication of the original
paper! Its relative simplicity is another factoriofportance.



Of course, these advantages are offset somewhahebyact that the model has only one
relaxation time, while it is well known that virtiliaall polymeric systems require a spectrum of
relaxation times to represent their dynamic dat.aAesult, there must clearly be some situations
where this limitation has to be taken seriouslywideer, there are other flow situations where the
simple model (7) is likely to be more than adequateredict real behaviour, at least in a qualrati
or semi-quantitative sense.

For two specific, but very different reasons, itafen convenient to add a ‘Newtonian’
contributionT; M to equation (7) and to write

T, =T +TR2, (8)

where

T = 2n,dy 9)
]

T AT =2n,d,. (10)

Computational rheologists have often found that the introductiérihe Newtonian component
can greatly assist in the numerical simulation omplex flows, andexperimental rheologists,
particularly those working with dilute solutions lafgh molecular weight polymers in a Newtonian
solvent, have also found the modification to befuls&hey invariably associatg with the solvent
viscosity andn, with the ‘polymer’ contribution to the total visdbs (In the following, we shall
assume that equations (8) to (10) now describe wieathave called the ‘Generalized White-
Metzner model’).

As an example of this stress splitting, considez thell-known Oldroyd B model, with
constitutive equations given by

O O
T +ATi =2/70|:dik+/12dikj|. (11)
It is often convenient to write this equation i tfiorm:
T =2nBd,, (12)
O
T + AT =2n0,(1-B)dy (13)

wherep =21,/ As.

For the popular Boger fluids, which have been usettany fundamental experimental studies
(see, for example, Boger and Walters 1993), thgnpet contribution to the total viscosity is very
low. This is dominated by the solvent contributiso, thatp is usually in the range 0.9 to 0.95, or
even higher.

2. A later development of interest

Twenty five years after the publication of the ora White-Metzner paper, Debbaut, Crochet,
Barnes and Walters studied a spemdlastic version of equation (7), with constitutive equatiaf
the form (see Debbaut et al. 1988, Debbaut andHetd988):

T =2N(V,€) dyy.- (14)
The symboly and € in equation (14) now denote the following invargndf the rate-of-
deformation tensor;g:



y=2Jll,, €=31 41 . (15)

In their work, there was no reference to a Newtorgalvent contribution and they compared
their numerical simulations with those for the stled Upper Convected Maxwell (UCM) model,
which can be considered either as a special catiged®ldroyd B model withh, = O or a special
case of the original White- Metzner model (2) wetinstant,.

We note that the important rheometrical functiamstifie UCM model are:

ny)=mo.

N,(¥)=27A7°, Ny(y)=0, (16)
3

1-Aé-24%%

Note that, even for finite values bf infinite extensional viscosities are predicted relatively
high (finite, order unity) extensional-strain rates

Debbaut et al. (1988) chose théunction in equation (14) such that the functiémrs/;(y) and
n:(&) were the same as those for the UCM model (i.esethiw equation (16)). The normal stress

difference N was of course zero for this inelastic model. Debbetual. (1988) referred to the
resulting inelastic model as GNM1.

By carrying out finite-element simulations for thiscoelastic UCM and inelastic GNM1 models,
Debbaut et al. (1988yere able to study the distinctive influence oktelasticity’ (as manifested
through the normal stress differences) and of tesitenal viscosity’'per se. They concentrated
largely on pressure-driven flow through axisymneetontractions with particular interest in the
‘resistance to flow’ as measured by the so-calleddite correction C, expressed as a function of a
suitable non-dimensional flow variable such as BDleborah number D(=\y) (see, for example,
Walters et al. 2009, where there are choices dwercharacteristic shear-rate, this being either
sampled at the geometry wall or an “average” vllased on the average velocity and length scale
in the constriction region).

In their paper, Debbaut and Crochet (1988) alsoifieddthe UCM model and generated the
UCM1 model, which possessed the same behaviolnedd€M model in steady simple shear flow,
but for which the extensional viscosity. was independent of extensional strain r&teand
possessed a constant vadge. We can write the equations of state for the UCHiddel in the
form:

ne(€)=

T =0, (17)

T +A T = 20(6)d) (18)
with

n(&)=n,(1-A£—-2A¢%). (19)
The rheometrical functions for this model:are

ny)=mo.

N,(y)=217,A0°, NLy)=0, (20)

Ne = 3o



We reproduce in Figure 1 important numerical sirmafes for the UCM, UCM1 and GNM1
models, which are taken from the Debbaut and Cto(t@88) paper. (This extended a similar
figure in the earlier Debbaut et al. (1988) worlyieh limited attention to the UCM and GNM1
models).

From a comparison of the simulations for the UCMI &NM1 models, it was possible for
Debbaut et al. to argue that, whereas increasinignsional viscosity levels can give rise to
substantial increases in the resistance to floauth contractions, these can be hidden and indeed
reversed by the influence of what we might refeasahe ‘normal stress effect’ associated with the
viscoelasticity of the UCM model.

In a very recent paper, Walters et al. (2009) athaé such a conclusion is consistent with the
conclusions of Binding, who in the second of twlluential papers on the subject (Binding 1988,
1991) presented arguments along the same liné®ss expressed above.

Referring again to Figure 1, we see that the Debbad Crochet (1988) simulations for the
UCM and UCM1 models help to confirm the above cosicdn. The simulations for the UCM
model clearly lie above those for the UCM1 moddie Two models have the same response in a
steady shear flow, but have markedly different oesps to an extensional deformation. So, the
message is now clear — high extensional viscodeigd to increases in the Couette correction, but
this can be damped and indeed reversed by the al@tness’ effect.

We are left with one very provocative question: Wiaven't the many numerical simulations
for constitutive equations like the Oldroyd B an@M models led to the observed increases in flow
resistance found experimentally, even though tinesgels seemed to capture the essential features
of rheometrical behaviour? We shall address thisralated questions in the next section

3. A very recent use of the Generalized White-Metznemodel

We have seen in the preceding section that extesisiascosity and normal stress differences
are opposing influences in determining the Couetigection in axisymmetric contraction flows.
One consequence of this is that contraction flolwsukl be used with caution as a means of
estimating extensional-viscosity levels, unless th#éhe normal-stress-difference effect is rekliv
small. This is important, since ‘contraction flowsave often been seen as providing a relatively
simple experimental means of estimating extensiorsdosity levels, ever since the pioneering
work of Cogswell (1972) [see also James and Wa(f€83)].

There is another consequence of the conclusiooheehin the last section. This relates
especially to those working in Computational Rhggl@and involves the growing interest in so-
called Boger fluids, these being very dilute san$ of high molecular polymers in very viscous
solvents [see, for example, Boger and Walters (J]993

When Boger fluids have been studied in flow throwgtisymmetric contractions, there is
universal acknowledgment that the Couette correcttr some other convenient measure of
‘resistance to flow’ such as the ‘extra pressuféedince,epd’ [see, for example, Binding et al.
(2006), Walters et al. (2009)], can become vergdaas a suitable variable such as the Deborah
number increases [see, for example, Nigen and V8gR€02)].

There has also been a consensus that, from a catigmat standpoint, the Oldroyd B model is
a useful ‘first approximation’ for Boger fluids. Is relatively simple and seems to possess the
ability to simulate rheometrical data reasonablyl.wihe problem has been that, when numerical
simulations have been carried out for Oldroyd Bduflowing through axisymmetric contractions,
using a low solvent/high solute viscosity fracti@¥1/9), significantdecreases in the Couette
correction with increasing Deborah number have Ipgedicted (see, for example, Figure 2).



The initial reaction of workers in the field to $ua situation was to question the accuracy of the
numerical schemes being employed. However, as tirag progressed and the subject of
Computational Rheology has come of age, this islamger viewed as a valid criticism and
simulations of the sort shown in Figure 2 are naswed as trustworthy.

As a result, doubt has been cast on the suitalofithe choice of constitutive equation, and the
present authors have recently singled out the edpliependence of the first normal stress
difference N on shear ratey as the most likely cause of the problem so fathasOldroyd B

model is concerned (Walters et al. 2009).

From a continuum mechanics standpoint, the initial dependence of the firstnmalr stress
difference N on shear ratey has to be quadratic and thereexperimental evidence that this
guadratic dependence can persist over a reasoraige of shear rates. However, there is also
rheometrical evidence available that the dependefdéd, on y ultimately becomes weaker than
guadratic as the shear rate increases further. ekample, from an extensive study of the
rheometrical behaviour of a series of Boger fluitlgkson et al. (1984) state: “It will be seen that
over a range of shear ratesis a linear function ofr and N is a quadratic function of , but that
there is a departure from this ‘second-order’ behavat the high shear rates”.

To accommodate such behaviour, the present autfwedters et al. 2009) employed a

Generalized White-Metzner model that they callezl Xhmodel. This had the following constitutive
eguations:

T® =2n,8d,
u (21)
T@+N@(V)T® =2n,1-B)g €)d.
ol 1
(&(V)= W}
1A @ @) - 22 ©)¢?
€)= , 22
%) | 1-ME-AE (22)
L1
% (€)= 1+3Ja2}'
The relevant rheometrical functions for the J madel
n= Bno +I’]0(l—[3),
_ -2
N 1: 2”0(1 Bg}\ly (23)
1+l
Ne = 38N, +30-B)N L
- ° %l1-Ag-2z22 |

where J is a positive constant. Note that the QMdirB model is given by J = 0. Some of the
relevant rheometry is contained in Figure 3. Qirse, the extensional viscostijy is independent
of J.

A hybrid finite volume/element¢/fv) scheme was used to study the behaviour of thed&inno
the contraction/expansion geometry with roundedhe® shown schematically in Figure 4. The
choice of geometry was driven by several factorgwvive do not need to go into here. Sufficient
to say that we felt that results for this geométaye immediate relevance for the more conventional
contraction geometry with sharp corners.



The finite volume/element numerical scheme we eggachas been shown to be second-order
accurate [see, for exampM/apperom and Webster (1998) and Webster et @05(20In brief, the
hybrid scheme consists of a Taylor-Galerkin (prexgficorrector) finite element discretisation in
conjunction with and a cell-vertex fluctuation-dilsution finite volume stencil. The finite element
approximation is applied to the momentum-continusst of equations, whilst the hyperbolic
constitutive equation is treated via the finiteurak discretisation. The combinésffv(sc) scheme
forms a time-stepping process, with a three fraetistagegc-formulation per time-step. On each
time-step cycle, the first stage solves a set ofaBgns for stress-velocity update, subject to the
current pressure state (and past state for incriaqag) in the momentum equation. Secondly, the
forward time-step pressure is updated by imposkheg dontinuity constraint through a Poisson
equation (suitably adjusted with time derivativedehsity for compressible flow). At a third stage,
the first fractional-stage velocity field is corted to be compliant with the updated pressure field

Figure 5 from Walters et al. (2009) contains sirtiates for various values of J obtained using
the above numerical techniques. The graphs tall tlwen story, namely that damping the quadratic
dependence of {\on y ultimately leads to positive values of tgad, something that is required to
matcheven qualitatively the published experimental axisymmetric contractitow data for Boger
fluids.

4. Some new computational solutions

To conclude, we shall show how a comparison of migalkesimulations for three constitutive
models of the White-Metzner type can elucidatehierrtthe various influences on the dynamics of
flow through contraction/expansion geometries. ¢arvenience, we shall label the three models as
A, B and C.

All the models have the usual structure, given by

T=TO+T®,

T® = 2n8d . (24)
For model A, we have Newtonian behaviour, i.e.

T®@=2n,(1-B)d . (25)
In the case of model B, is given by

T@ = 2n,(1-B)d (26)

 (1-ag-208))
This is essentially the Generalized Newtonian Madelhave already discussed, with rheometrical
functions given by
n ="y
N, =0, (27)

1
=3B, +3(1- ,
Ne =3BN, +3( Bho[l_)\lé_%féz}

Model C is a Generalized White-Metzner type mogdeien by

O
T4\, TO = 2n(7.€)d,

(28)
N(Y.¢) =n,@-p)(1-A - 200¢Y).



with rheometrical functions given by
n="N,
N, =2n,(1-BA,Y, (29)
Ne =3N,-

It is clear from the various rheometrical functidhat a comparison of models A and B allows
us to investigate extensional-viscosity effectsileva comparison of models A and C permits us to
isolate normal stress effects

A comparison similar to that which we are proposwgs contained in the early work of
Debbaut and Crochet (1988) for flow through a 4fitaction. As we have already indicated, their
work was limited to UCM-type models.

We show in Figure 6, numerical simulations for medg, B and C, and, in Figure 7, we also
include simulations for the Oldroyd B model. Notitat we have included a Newtoniegierence
line in both figuresalthough we are aware that 0 for a Newtonian liquid and that, in that sense
a Deborah number of zero is strictly the only ralgwone in that case.

The curves for models B and C give further convigcevidence of the relative effects of
normal-stress differences and extensional viscositydetermining the flow resistance in the
contraction/expansion geometry shown in Figure 4.

Close inspection of the curve for the Oldroyd B mloth Figure 7 allows us to offer an
alternative interpretation of the seeming inabibfymodels of the UCM/Oldroyd B type to predict
the increases in epd found experimentally for Bdlyeas.

In describing these developments, we can do nerb#tn quote from a general review of
Computational Rheology, published in 1993. In nefey to the schematic figure of Couette
correction against Deborah number, which we hapeodriced in Figure 8, Crochet and Walters
(1993) observed:

“The slight drop in the Couette correction at loalues of the Deborah number is difficult to
measure experimentally, but most respectable nealecodes testify to its existence. The large
increase in the Couette correction at high Deborahber is very easy to measure experimentally
but provides significant challenges to numericahdators as they attempt to model contraction
flows for highly-elastic liquids”.

As a digression, we remark that the above is a go@anple of the frustration encountered in the
field, namely that the flow phenomena which carebsily predicted at low values of the Deborah
number, are at the same time difficult to measypeementally. At the same time, the extravagant
changes in flow characteristics, which are eas#sndnstrated experimentally at high values of the
Deborah number, present major challenges to evemust adept numerical algorithm.

In many ways, this remains a valid observation, tth the passage of time and improvement in
computer facilities and numerical techniques, in@®v possible to reach higher values of the
Deborah number, and our simulations for the OldrByehodel contained in Figure 7 are a case in
point. We now see a behaviour which is in qualiathigreement with that shown schematically in
Figure 8. The curve for thapd is clearly going to reach positive values — altHouge are currently
unable to reach the Deborah numbers required fertéthhappen. However, we have been able to
reach anepd value of 0.999792 for De=5.1! Furthermore, someoaf previously published
solutions forf = 0.95 shown in Figure 9 do exhibit the elusivsipee values ofpd (see Aguayo

et al. (2008)).

So, it seems that simulations for even the origidlairoyd B model would be able to supply the
increases in C or epd that we are seeking, if amelhvwve are able to reach sufficiently high values
of the Deborah numben the computational solutions. On reflection, thlesentirely reasonable,

9



since the positive effect from ever-increasing egtenal-viscosity levels must ultimately dominate
the negative influence of the normal stresses. @Usly, the departure from the quadratic
dependence of Non y found in most, if not all, Boger fluids at higheslr rates will hasten this

domination, as our simulations have shown.

5. Conclusions

In this paper, we have attempted to show how génatians of the original White-Metzner
model are still proving useful some fourty six ygaffter its introduction. In particular, we have
argued that such generalizations are still helpi@plogists to understand the competing influence
of various rheometrical functions on important flamaracteristics. We have concentrated on
axisymmetric contraction and contraction/expanglows, but we know that related work is also
proceeding on some axisymmetric free surface flgvsné et al. 2009).

Finally, we need to reissue a warning first expeddsy Debbaut et al. (1988) and Debbaut and
Crochet (1988). It concerns an important limitatajrthe introduction of &ll; dependence into the
constitutive equation. In particular, such a depeee has no influence in two-dimensional flows,
sincelllz is zero in such flows. So, the introduction ofependence on bott, andlllz in the
model must be seen simply as a very useful meamvestigating various rheological influences in
three-dimensional flows, as we have attempted to illdstna this paper.

Clearly, the above warning is irrelevant for modelsh a dependence only on tlsecond
invariantll,, and these will continue to be useful as a meéstudying complex flows in both two
and three dimensions.

Dedication

This paper is dedicated to Professor James Lind#zite on the occasion of his 7®irthday.
Hopefully, the research we have described will ensas a fitting tribute to the relevance of just
one of his many research publications.

10



Reference list

Aboubacar M., Matallah H., Tamaddon-Jahromi H.Rd awebster M.F., 2002, Numerical
Prediction of Extensional Flows in Contraction Gednes: Hybrid Finite Volume/Element
Method J. Non-Newtonian Fluid Mech. 104 125-64.

Agrawal P.A., Lee W.K., Lorntson J.M., Richardson.CWissbrun K.F., Metzner A.B., 1977,
Rheological behaviour of molten polymers in shearamd in extensional flows, Trans. Soc.
Rheol.21: 355 — 379.

Aguayo J.P., Tamaddon-Jahromi H.R. and Webster, M8, Excess pressure-drop estimation in
contraction flows for strain-hardening fluids Non-Newtonian Fluid Mech. 158 157-176.

Alves M.A., Oliveira P.J. and Pinho F.T., 2003. Bemark solutions for the flow of Oldroyd-B
and PTT fluids in planar contractiorls Non-Newtonian Fluid Mech. 110: 45-75.

Baid K.M. and Metzner A.B., 1977, Rheological praes of dilute polymer solutions determined
in extensional and in shearing experiments, Tr8ons. Rheol21: 237 — 260.

Barnes H.A., Hutton J.F. and Walters K., 1989, Aimdduction to Rheolog\Elsevier, Amsterdam.

Binding D.M., 1988, An approximate analysis for trastion and converging flows]. Non-
Newtonian Fluid Mech. 27: 173-189.

Binding D.M., 1991, Further considerations of arisyetric contraction flows). Non-Newtonian
Fluid Mech. 41: 27-42.

Binding D.M., Phillips P.M. and Phillips T.N., 200€ontraction/expansion flows: The pressure
drop and related issuek,Non-Newtonian Fluid Mech. 137: 31-38.

Bird R.B., Armstrong R.C. and Hassager O., 1987nddyics of Polymeric Fluids, Vol. Eluid
Mechanics, J. Wiley, New York.

Boger, D.V. and Walters, K., 1993, Rheological Rireana in Focuglsevier Science Publishers.

Cogswell F.N., 1972, Measuring the extensional Idggoof polymer meltsTran. Soc. Rheol., 16:
383-403.

Crochet M.J. and Walters K., 1993, Computationatédtbgy: a new science, Endeavour, Vol. 17,
No.2, 64 — 77.

Debbaut B. and Crochet M.J., 1988, Extensionakceffen complex flows,). Non-Newtonian Fluid
Mech. 30: 169-184.

Debbaut B., Crochet M.J., H.A. Barnes and K. Waltelr988, Extensional effects in inelastic
liquids, Xth Inter. Congress on Rheology, Sydney 291-293.

Jackson K.P., Walters K and Williams R.W., 1984th&ometrical study of Boger fluidg, Non-
Newtonian Fluid Mech. 14: 173-188.

James D.F., Walters K., 1993, In: A.A. Collyer, (Edechniques in Rheological Measurement,
Chapman and Hall, London, UK, 33-53.

Nigen S. and Walters K., 2002, Viscoelastic contoacflows: comparison of axisymmetric and
planar configurations]. Non-Newtonian Fluid Mech. 102 343-359.

Oldroyd J.G., 1950, On the formulation of rheol@agiequations of statdroc. Roy. Soc. A200:
523-541.

Tanner R. and Walters K.,1998, Rheology, an Historical PerspectivE|sevier Science &
Technology, Netherlands.

Tomé M.F., McKee S. and Walters K., A computatiostldy of rheological influences on the
‘splashing’ experiment, to be published.

Walters K., Webster M.F., Tamaddon-Jahromi H.RQ®0The numerical simulation of some
contraction flows of highly elastic liquids and ith@npact on the relevance of the Couette
correction in extensional rheology, submittedCteem Eng <ci.

Wapperom P. and Webster M.F., 1998, A second-dmglbrid finite-element/volume method for
viscoelastic flows,. Non-Newtonian Fluid Mech.79: 405-431.

Webster M.F., Tamaddon-Jahromi H.R. and Aboubacar2004, Transient viscoelastic flows in
planar contractions). Non-Newtonian Fluid Mech. 118: 83-101.

White J.L. and Metzner A.B., 1963, Development afigtitutive equations for polymeric melts and
solutions J. Appl. Polym. Sci. 7: 1867-1889.

11



15

0.5

-05

Figure 1: Couette correction vs Dexg ), taken from Debbaut and Crochet (1988)

2 -
1k —8—— Alves etal. (2003)
i [ Aboubacar et al.(2002)
C OK
af
2f
3L ] ] ]
3O 1 2 3 4
De

Figure 2: Couette correction (C) vs Dex(z,), Oldroyd-B modelf=1/9
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Figure 5: Normalised pressure-drapd) vs De (=y,, ) for the J model
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Figure 6: Normalised pressure-drapd) vs De (=Ay, ) for A, B, and C models
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Figure 7: Normalised pressure-dr@pq) vs De (=y,, ) for A, B, C, and Oldroyd-B models
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Figure 9: Normalised pressure-drapd) vs De (=\y,, ) for the Oldroyd-B model
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