
 1 

 

 

The White-Metzner model – Then and Now 

 
K. Waltersa, M.F. Websterb, and H.R.Tamaddon-Jahromib 

 
a Institute of Mathematics and Physics, University of Aberystwyth, Aberystwyth, SY23 3BZ, UK 

b Institute of Non-Newtonian Fluid Mechanics, Swansea University, School of Engineering,  
Singleton Park, Swansea, SA28PP, UK 

 

Abstract 

There is no doubt that the publication of the 1963 Journal of Applied Polymer Science paper of  
J.L.White and A.B.Metzner was an important landmark in constitutive modelling, with important 
consequences in process modelling and related fields.  

The paper appeared after a period of research by others that emphasised the need for ‘generality’ in 
constitutive modelling. As important as such studies were at the time, the resulting constitutive equations 
were too complex to be used in ‘earthy’ practical rheological problems of the sort encountered in process 
modelling. 

So, the 1958 Proc Roy Soc paper of J.G.Oldroyd and, more particularly, the White-Metzner 1963 paper 
were timely additions to the literature, especially for those working in practical fields such as polymer 
processing. The original White-Metzner model had constitutive equations of the form: 

ik ik ikp Tσ = − δ + ,                                                                

ik ik ik2
G

T T d
∇

+ =η η  ,                                                             

where σik is the stress tensor, p is an arbitrary isotropic pressure (for incompressible fluids), δik is 
the Kronecker delta and the overscore triangle denotes the upper convective time derivative 
introduced by Oldroyd in his seminal 1950 paper. As originally introduced, η was ‘a function of the 
invariants of stress matrix’ and G was ‘a constant modulus’. 

Various simple modifications to the original White-Metzner model began to appear in the 
rheological literature and the current authors have recently carried out simulations for what we 
might call ‘the Generalized White Metzner model’. This has equations of state of the form:  

ik ik ik2T T d ,
∇

+ =λ η                                                                

where λ and η are now functions of ΙΙ2 and ΙΙΙ3, the second and third invariants of the rate-of strain 
tensor. 

We shall trace the evolution of such an equation, paying particular attention to important 
contributions by Debbaut et al. in 1988. 

The remainder of the presentation will illustrate how various forms of the Generalized White-
Metzner model can be used to explain, amongst other things, the competing influences of normal 
stress differences and extensional viscosity in some complex flows of importance in process 
modelling. 

 

 



 2 

1. Introduction 

In rheology, the twenty five years following the Second World War were noted above all for 
advances in theoretical rheology, particularly constitutive modelling, and several innovative papers 
appeared in that period. The names of J.G. Oldroyd, R.S. Rivlin, J.L. Ericksen, A.E. Green, M. 
Reiner, B.D. Coleman and W. Noll in particular are associated with the most important 
contributions (see, for example, Tanner and Walters 1998). 

It soon became apparent that the search for complete generality (as is provided, for example, by 
the Navier-Stokes equations for a Newtonian fluid) led to constitutive equations of prohibitive 
complexity, except in the case of some simple flows. In consequence, rheologists, particularly those 
involved in process modelling, sought simple approximate equations with a predictive capability. 
This resulted in the appearance of a plethora of constitutive equations, many of which had their 
faithful adherents and supporters, although it must be said that the popularity of a given simple 
constitutive model has often been ephemeral. This observation cannot be levelled at the so-called 
White-Metzner model, which appeared in 1963 and is still being used in numerical simulations for 
complex viscoelastic flows today. Indeed, the current authors have found the use of variants of the 
White-Metzner model to be extremely useful in some recent computational studies (Walters et al. 
2009). 

In their original paper, White and Metzner (1963) proposed a constitutive equation, which we 
can write in the form: 

ik ik ikp Tσ = − δ + ,                                                                (1) 

ik ik ik2
G

T T d
∇

+ =η η  ,                                                              (2) 

where σik is the stress tensor, p is an arbitrary isotropic pressure (for incompressible fluids), δik is 
the Kronecker delta and the overscore triangle denotes the upper convective time derivative 
introduced by Oldroyd in his seminal 1950 paper (Oldroyd, 1950). As originally introduced, η was 
‘a function of the invariants of stress matrix’ and G was ‘a constant modulus’. 

We note that it is customary to write λ=η/G and to define λ as the relaxation time. 

For a steady simple shear flow with constant shear rateɺγ , the model defined by (1) and (2) 
predicts the following rheometrical functions: 

2
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,

N , N ,

=

= =

ɺσ ηγ
σ                                                               (3) 

where σ is the shear stress and N1 and N2 are the first and second normal stress differences, 
respectively. 

N2=0 corresponds to the so-called Weissenberg hypothesis, which was very much in vogue in 
1963 when White and Metzner wrote their paper. Subsequent research has shown that, for many 
polymeric liquids, N2 is negative and much smaller than N1 (cf. Barnes et al. 1989). So, the 
conclusion reached by White and Metzner that “most experimental measurements point to either the 
predicted equality or to a near equality of τ22 and τ33” is still valid*. 

Hence, the zero second normal stress difference is not taken to be a major disadvantage of the 
White-Metzner model. Indeed, the so-called Oldroyd-B model, which has been so extensively used 
in computational rheology, has the same prediction. 

                                                 
* In modern notation, N2 = τ22 - τ33 
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In assessing the relationship between N1 and σ implied in (3), White and Metzner (1963) 
concluded that it worked reasonably well for some polymeric systems (like a high molecular weight 
polystyrene solution in toluene) but not so well for others (e.g. a low molecular weight polystyrene 
solution). Of course, for the latter, this simply suggested relaxing the constancy of G and writing  

ik ik ik2T T d ,
∇

+ =λ η                                                              (4) 

with λ and η as independent functions of the invariants of the stress matrix (tensor) [see, for 
example, Baid and Metzner (1977), Agrawal et al. (1977)]. 

In their original paper, White and Metzner worked with invariants of the stress tensor, but they 
also suggested that invariants of the rate-of-strain tensor could be used instead. Indeed, as the model 
has been introduced in standard text books and employed by others in process modelling, the most 
common expression of the White-Metzner model involves λ and η being functions of the second 
invariant of the rate-of-strain tensor: 

( )1
tr

2d =II 2d                                                                    (5) 

For incompressible fluids, the first invariant is zero and the third invariant, defined by 

( )d det ,=III d                                                                    (6) 

is zero in two-dimensional flows, which presumably accounts for the early restriction to the second 
invariant of the rate-of-strain tensor. However, some have ‘kept the door open’ to a dependence on 
ΙΙΙ3. For example, in their influential text, Bird et al. (1987) comment: “There are of course other 
ways in which invariants could be introduced into the model. There is no reason, other than 
preserving simplicity, to include the invariant ΙΙ2 of dik but not  ΙΙΙ3  in the model.” 

As a result of these developments and suggestions, we now write down what we can readily call 
the ‘Generalised White-Metzner model’: 

ik ik ik2T T d ,
∇

+ =λ η                                                               (7) 

where λ and η are functions of ΙΙ2 and ΙΙΙ3. 

Such a model allows us to:  

(i) Choose the dependence of η on ΙΙ2 so as to match the experimental shear-viscosity data for any 
polymeric liquid of interest. 

(ii) Choose the dependence of λ on ΙΙ2 so as to match the first normal stress difference data for the 
polymeric liquid. 

(iii)  Choose the dependence of λ and η on the third invariant in such a manner as to match any 
extensional viscosity Eη  data which may be available. We shall give examples of the usefulness of 

this dependence on ΙΙΙ3 in later sections. 

(iv)  As we have already noted, N2=0 for the model. 

 

(i) - (iv) are some of the reasons for the continued popularity of the White-Metzner models in 
process modelling and similar studies, some fourty-six years after the publication of the original 
paper! Its relative simplicity is another factor of importance. 
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Of course, these advantages are offset somewhat by the fact that the model has only one 
relaxation time, while it is well known that virtually all polymeric systems require a spectrum of 
relaxation times to represent their dynamic data. As a result, there must clearly be some situations 
where this limitation has to be taken seriously. However, there are other flow situations where the 
simple model (7) is likely to be more than adequate to predict real behaviour, at least in a qualitative 
or semi-quantitative sense. 

For two specific, but very different reasons, it is often convenient to add a ‘Newtonian’ 
contribution Tik

(1) to equation (7) and to write 
1 2( ) ( )

ik ik ikT T T ,= +                                                                 (8) 

where 
1

12( )
ik ikT d ,= η                                                                    (9) 

2 2
22( ) ( )

ik ik ikT T d .
∇

+ λ = η                                                             (10) 

Computational rheologists have often found that the introduction of the Newtonian component 
can greatly assist in the numerical simulation of complex flows, and experimental rheologists, 
particularly those working with dilute solutions of high molecular weight polymers in a Newtonian  
solvent, have also found the modification to be useful. They invariably associate η1 with the solvent 
viscosity and η2 with the ‘polymer’ contribution to the total viscosity. (In the following, we shall 
assume that equations (8) to (10) now describe what we have called the ‘Generalized White-
Metzner model’).  

As an example of this stress splitting, consider the well-known Oldroyd B model, with 
constitutive equations given by 

ik ikik 1 0 ik 22T T d d .
∇ ∇ + = +  

λ η λ                                                      (11) 

It is often convenient to write this equation in the form: 
1

02( )
ik ikT d ,= η β                                                                  (12) 

2 2
1 02( ) ( )

ik ik ikT T (1- )d ,
∇

+ λ = η β                                                       (13) 

where β = λ2 / λ1. 

For the popular Boger fluids, which have been used in many fundamental experimental studies 
(see, for example, Boger and Walters 1993), the polymer contribution to the total viscosity is very 
low. This is dominated by the solvent contribution, so that β is usually in the range 0.9 to 0.95, or 
even higher. 

 

2. A later development of interest 

 

Twenty five years after the publication of the original White-Metzner paper, Debbaut, Crochet, 
Barnes and Walters studied a special inelastic version of equation (7), with constitutive equations of 
the form (see Debbaut et al. 1988, Debbaut and Crochet 1988): 

2 ( , ) .ik ikT d= η γ εɺ ɺ                                                                  (14) 

The symbolsγɺ and εɺ  in equation (14) now denote the following invariants of the rate-of-
deformation tensor dik : 
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2 3d d d, / .γ = ε =II III IIɺ ɺ                                                       (15) 

In their work, there was no reference to a Newtonian solvent contribution and they compared 
their numerical simulations with those for the so-called Upper Convected Maxwell (UCM) model, 
which can be considered either as a special case of the Oldroyd B model with λ2 = 0 or a special 
case of the original White- Metzner model (2) with constant η. 

We note that the important rheometrical functions for the UCM model are: 

0

2
1 0 2

0
E 2 2

2 0

3

1 2

( ) ,

N ( ) , N ( ) ,

( ) .

=

= =

=
− −

ɺ

ɺ ɺ ɺ

ɺ

ɺ ɺ

η γ η
γ η λγ γ

ηη ε
λε λ ε

                                                   (16) 

Note that, even for finite values of λ, infinite extensional viscosities are predicted for relatively 
high (finite, order unity) extensional-strain rates. 

Debbaut et al. (1988) chose the η function in equation (14) such that the functions for ( )ɺη γ  and 

E( )ɺη ε  were the same as those for the UCM model (i.e. those in equation (16)). The normal stress 

difference N1 was of course zero for this inelastic model. Debbaut et al. (1988) referred to the 
resulting inelastic model as GNM1. 
By carrying out finite-element simulations for the viscoelastic UCM and inelastic GNM1 models, 
Debbaut et al. (1988) were able to study the distinctive influence of ‘viscoelasticity’ (as manifested 
through the normal stress differences) and of ‘extensional viscosity’ per se. They concentrated 
largely on pressure-driven flow through axisymmetric contractions with particular interest in the 
‘resistance to flow’ as measured by the so-called Couette correction C, expressed as a function of a 
suitable non-dimensional flow variable such as the Deborah number De (=λγɺ ) (see, for example, 
Walters et al. 2009, where there are choices over the characteristic shear-rate, this being either 
sampled at the geometry wall or an “average” value based on the average velocity and length scale 
in the constriction region). 

In their paper, Debbaut and Crochet (1988) also modified the UCM model and generated the 
UCM1 model, which possessed the same behaviour as the UCM model in steady simple shear flow, 
but for which the extensional viscosity Eη  was independent of extensional strain rate ɺε  and 

possessed a constant value03η . We can write the equations of state for the UCM1 model in the 

form: 
1 0( )

ikT ,=                                                                       (17) 

2 2
1 2( ) ( )

ik ik ikT T ( )d ,
∇

+ λ = η εɺ                                                         (18) 

with 

 2 2
0 1 11 2( )= ( ).η ε η − λ ε − λ εɺ ɺ ɺ                                                      (19) 

The rheometrical functions for this model are:  

0

2
1 0 1 2

E 0

2 0

3

( ) ,

N ( ) , N ( ) ,

.

=

= =
=

ɺ

ɺ ɺ ɺ

η γ η
γ η λ γ γ

η η
                                                   (20) 
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We reproduce in Figure 1 important numerical simulations for the UCM, UCM1 and GNM1 
models, which are taken from the Debbaut and Crochet (1988) paper. (This extended a similar 
figure in the earlier Debbaut et al. (1988) work, which limited attention to the UCM and GNM1 
models).  

From a comparison of the simulations for the UCM and GNM1 models, it was possible for 
Debbaut et al. to argue that, whereas increasing extensional viscosity levels can give rise to 
substantial  increases in the resistance to flow through contractions, these can be hidden and indeed 
reversed by the influence of what we might refer to as the ‘normal stress effect’ associated with the 
viscoelasticity of the UCM model. 

In a very recent paper, Walters et al. (2009) argue that such a conclusion is consistent with the 
conclusions of Binding, who in the second of two influential papers on the subject (Binding 1988, 
1991) presented arguments along the same lines as those expressed above. 

Referring again to Figure 1, we see that the Debbaut and Crochet (1988) simulations for the 
UCM and UCM1 models help to confirm the above conclusion. The simulations for the UCM 
model clearly lie above those for the UCM1 model. The two models have the same response in a 
steady shear flow, but have markedly different responses to an extensional deformation. So, the 
message is now clear – high extensional viscosities lead to increases in the Couette correction, but 
this can be damped and indeed reversed by the ‘normal stress’ effect. 

We are left with one very provocative question: Why haven’t the many numerical simulations 
for constitutive equations like the Oldroyd B and UCM models led to the observed increases in flow 
resistance found experimentally, even though these models seemed to capture the essential features 
of rheometrical behaviour? We shall address this and related questions in the next section. 

 

3. A very recent use of the Generalized White-Metzner model 

 

We have seen in the preceding section that extensional viscosity and normal stress differences 
are opposing influences in determining the Couette correction in axisymmetric contraction flows. 
One consequence of this is that contraction flows should be used with caution as a means of 
estimating extensional-viscosity levels, unless that is the normal-stress-difference effect is relatively 
small. This is important, since ‘contraction flows’ have often been seen as providing a relatively 
simple experimental means of estimating extensional viscosity levels, ever since the pioneering 
work of Cogswell (1972) [see also James and Walters (1993)]. 

 There is another consequence of the conclusion reached in the last section. This relates 
especially to those working in Computational Rheology and involves the growing interest in so-
called Boger fluids, these being very dilute solutions of high molecular polymers in very viscous 
solvents [see, for example, Boger and Walters (1993)]. 

When Boger fluids have been studied in flow through axisymmetric contractions, there is 
universal acknowledgment that the Couette correction, or some other convenient measure of 
‘resistance to flow’ such as the ‘extra pressure difference, epd’ [see, for example, Binding et al. 
(2006), Walters et al. (2009)], can become very large as a suitable variable such as the Deborah 
number increases [see, for example, Nigen and Walters (2002)]. 

There has also been a consensus that, from a computational standpoint, the Oldroyd B model is 
a useful ‘first approximation’ for Boger fluids. It is relatively simple and seems to possess the 
ability to simulate rheometrical data reasonably well. The problem has been that, when numerical 
simulations have been carried out for Oldroyd B fluids flowing through axisymmetric contractions, 
using a low solvent/high solute viscosity fraction (β=1/9), significant decreases in the Couette 
correction with increasing Deborah number have been predicted (see, for example, Figure 2). 
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The initial reaction of workers in the field to such a situation was to question the accuracy of the 
numerical schemes being employed. However, as time has progressed and the subject of 
Computational Rheology has come of age, this is no longer viewed as a valid criticism and 
simulations of the sort shown in Figure 2 are now viewed as trustworthy. 

As a result, doubt has been cast on the suitability of the choice of constitutive equation, and the 
present authors have recently singled out the implied dependence of the first normal stress 
difference N1 on shear rate γɺ  as the most likely cause of the problem so far as the Oldroyd B 
model is concerned (Walters et al. 2009). 

From a continuum mechanics standpoint, the initial dependence of the first normal stress 
difference N1 on shear rate γɺ  has to be quadratic and there is experimental evidence that this 
quadratic dependence can persist over a reasonable range of shear rates. However, there is also 
rheometrical evidence available that the dependence of N1 on γɺ ultimately becomes weaker than 
quadratic as the shear rate increases further. For example, from an extensive study of the 
rheometrical behaviour of a series of Boger fluids, Jackson et al. (1984) state: “It will be seen that 
over a range of shear rates, σ is a linear function of ɺγ  and N1 is a quadratic function of ɺγ  , but that 
there is a departure from this ‘second-order’ behaviour at the high shear rates”.  

To accommodate such behaviour, the present authors (Walters et al. 2009) employed a 
Generalized White-Metzner model that they called the J model. This had the following constitutive 
equations: 

 
(1)

0
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1 0 54
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= η β
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∇∇∇∇          (21) 
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        (22) 

The relevant rheometrical functions for the J model are: 
 

0 0

2
0 1

1 2

E 0 0 2 2
1 1

(1 ),

2 (1 )
N ,

1 J

1
3 3(1 ) ,

1 2

η = βη + η −β

η −β λ γ=
+ γ

 
η = βη + −β η  − λ ε − λ ε 

ɺ

ɺ

ɺ ɺ

          (23) 

where J is a positive constant. Note that the Oldroyd B model is given by J = 0. Some of the 
relevant  rheometry is contained in Figure 3. Of course, the extensional viscosity ηE is independent 
of J. 

A hybrid finite volume/element (fe/fv) scheme was used to study the behaviour of the J model in 
the contraction/expansion geometry with rounded corners shown schematically in Figure 4. The 
choice of geometry was driven by several factors which we do not need to go into here. Sufficient 
to say that we felt that results for this geometry have immediate relevance for the more conventional 
contraction geometry with sharp corners.  
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The finite volume/element numerical scheme we employed has been shown to be second-order 
accurate [see, for example, Wapperom and Webster (1998) and Webster et al. (2005)]. In brief, the 
hybrid scheme consists of a Taylor-Galerkin (predictor-corrector) finite element discretisation in 
conjunction with and a cell-vertex fluctuation-distribution finite volume stencil. The finite element 
approximation is applied to the momentum-continuity set of equations, whilst the hyperbolic 
constitutive equation is treated via the finite volume discretisation. The combined fe/fv(sc) scheme 
forms a time-stepping process, with a three fractional-staged pc-formulation per time-step. On each 
time-step cycle, the first stage solves a set of equations for stress-velocity update, subject to the 
current pressure state (and past state for incremental-pc) in the momentum equation. Secondly, the 
forward time-step pressure is updated by imposing the continuity constraint through a Poisson 
equation (suitably adjusted with time derivative of density for compressible flow). At a third stage, 
the first fractional-stage velocity field is corrected to be compliant with the updated pressure field. 

Figure 5 from Walters et al. (2009) contains simulations for various values of J obtained using 
the above numerical techniques. The graphs tell their own story, namely that damping the quadratic 
dependence of N1 on γɺ ultimately leads to positive values of the epd, something that is required to 
match even qualitatively the published experimental axisymmetric contraction- flow data for Boger 
fluids. 

 

4. Some new computational solutions  

To conclude, we shall show how a comparison of numerical simulations for three constitutive 
models of the White-Metzner type can elucidate further the various influences on the dynamics of 
flow through contraction/expansion geometries. For convenience, we shall label the three models as 
A, B and C.  

All the models have the usual structure, given by 

 
(1) (2)

(1)
0

,

2 .

+
= η β

T = T T

T d  
                                                                (24) 

For model A, we have Newtonian behaviour, i.e. 
(2)

02 (1 ) .= η −βT d                                                              (25) 

In the case of model B, T(2) is given by  

( )
0(2)

2
1 1

2 (1 )
.

1 2( )

η −β
=

− λ ε − λ ε
d

T
ɺ ɺ

                                                     (26) 

This is essentially the Generalized Newtonian Model we have already discussed, with rheometrical 
functions given by  

0
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1
3 3(1 ) ,

1 2

,η η

=

 
η = βη + −β η  − λ ε − λ ε 

=

ɺ ɺ

                                         (27) 

Model C is a Generalized White-Metzner type model, given by 

( )0

(2) (2)
1

2
1 1(1 )

T 2 ( , )

( , ) 1 2( ) ,

∇

η − β

+ λ = η γ ε

η γ ε = − λ ε − λ ε

T d,ɺ ɺ

ɺ ɺ ɺ ɺ

                                               (28) 



 9 

with rheometrical functions given by  

0

1 0

E 0

2
1N 2 (1 ) ,

3 .

,η η

= η − β

η = η

λ γ

=
ɺ                                                             (29)  

  

It is clear from the various rheometrical functions that a comparison of models A and B allows 
us to investigate extensional-viscosity effects, while a comparison of models A and C permits us to 
isolate normal stress effects.  

A comparison similar to that which we are proposing was contained in the early work of 
Debbaut and Crochet (1988) for flow through a 4:1 contraction. As we have already indicated, their 
work was limited to UCM-type models. 

We show in Figure 6, numerical simulations for models A, B and C, and, in Figure 7, we also 
include simulations for the Oldroyd B model. Notice that we have included a Newtonian reference 
line in both figures, although we are aware that λ = 0 for a Newtonian liquid and that, in that sense, 
a Deborah number of zero is strictly the only relevant one in that case. 

The curves for models B and C give further convincing evidence of the relative effects of 
normal-stress differences and extensional viscosity in determining the flow resistance in the 
contraction/expansion geometry shown in Figure 4. 

Close inspection of the curve for the Oldroyd B model in Figure 7 allows us to offer an 
alternative interpretation of the seeming inability of models of the UCM/Oldroyd B type to predict 
the increases in epd found experimentally for Boger fluids. 

In describing these developments, we can do no better than quote from a general review of 
Computational Rheology, published in 1993. In referring to the schematic figure of Couette 
correction against Deborah number, which we have reproduced in Figure 8, Crochet and Walters 
(1993) observed:  

“The slight drop in the Couette correction at low values of the Deborah number is difficult to 
measure experimentally, but most respectable numerical codes testify to its existence. The large 
increase in the Couette correction at high Deborah number is very easy to measure experimentally 
but provides significant challenges to numerical simulators as they attempt to model contraction 
flows for highly-elastic liquids”. 

As a digression, we remark that the above is a good example of the frustration encountered in the 
field, namely that the flow phenomena which can be easily predicted at low values of the Deborah 
number, are at the same time difficult to measure experimentally. At the same time, the extravagant 
changes in flow characteristics, which are easily demonstrated experimentally at high values of the 
Deborah number, present major challenges to even the most adept numerical algorithm. 
In many ways, this remains a valid observation, but, with the passage of time and improvement in 
computer facilities and numerical techniques, it is now possible to reach higher values of the 
Deborah number, and our simulations for the Oldroyd B model contained in Figure 7 are a case in 
point. We now see a behaviour which is in qualitative agreement with that shown schematically in 
Figure 8. The curve for the epd is clearly going to reach positive values – although we are currently 
unable to reach the Deborah numbers required for this to happen. However, we have been able to 
reach an epd value of 0.999792 for De=5.1! Furthermore, some of our previously published 
solutions for β = 0.95 shown in Figure 9 do exhibit the elusive positive values of epd (see Aguayo 
et al. (2008)).  

So, it seems that simulations for even the original Oldroyd B model would be able to supply the 
increases in C or epd that we are seeking, if and when we are able to reach sufficiently high values 
of the Deborah number in the computational solutions. On reflection, this is entirely reasonable, 
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since the positive effect from ever-increasing extensional-viscosity levels must ultimately dominate 
the negative influence of the normal stresses. Obviously, the departure from the quadratic 
dependence of N1 on ɺγ  found in most, if not all, Boger fluids at high shear rates will hasten this 
domination, as our simulations have shown. 

 

5. Conclusions 

In this paper, we have attempted to show how generalizations of the original White-Metzner 
model are still proving useful some fourty six years after its introduction.  In particular, we have 
argued that such generalizations are still helping rheologists to understand the competing influence 
of various rheometrical functions on important flow characteristics. We have concentrated on 
axisymmetric contraction and contraction/expansion flows, but we know that related work is also 
proceeding on some axisymmetric free surface flows (Tomé et al. 2009).  

Finally, we need to reissue a warning first expressed by Debbaut et al. (1988) and Debbaut and 
Crochet (1988). It concerns an important limitation of the introduction of a ΙΙΙ3 dependence into the 
constitutive equation. In particular, such a dependence has no influence in two-dimensional flows, 
since ΙΙΙ3  is zero in such flows. So, the introduction of a dependence on both ΙΙ2   and ΙΙΙ3 in the 
model must be seen simply as a very useful means of investigating various rheological influences in 
three-dimensional flows, as we have attempted to illustrate in this paper. 

Clearly, the above warning is irrelevant for models with a dependence only on the second 
invariant ΙΙ2 , and these will continue to be useful as a means of studying complex flows in both two 
and three dimensions. 

 

Dedication 

This paper is dedicated to Professor James Lindsay White on the occasion of his 70th birthday. 
Hopefully, the research we have described will be seen as a fitting tribute to the relevance of just 
one of his many research publications. 
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Figure 1: Couette correction vs De (=
w

λγɺ ), taken from Debbaut and Crochet (1988) 
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Figure 2: Couette correction (C) vs De (=
avg

λγɺ ), Oldroyd-B model, β=1/9 
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Figure 3: Representative normal stress data for the J model 
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Figure 4: Schematic diagram of axisymmetric contraction/expansion 
geometry 
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Figure 5: Normalised pressure-drop (epd) vs De (=
avg

λγɺ ) for the J model 

 

Figure 6: Normalised pressure-drop (epd) vs De (=
avg

λγɺ ) for  A, B, and C models 
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Figure 7: Normalised pressure-drop (epd) vs De (=
avg

λγɺ ) for A, B, C, and Oldroyd-B models 

 

Figure 8: Couette correction vs De (=
w

λγɺ ), taken from Crochet and Walters (1993) 
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Figure 9: Normalised pressure-drop (epd) vs De (=
avg

λγɺ ) for the Oldroyd-B model 

 


