1
1

Introduction to Quantum Computing and its role on Big data.
First A. Author1,2, Second B Author and Third Author,

Department of Computer Science
KL University, Vijayawada, 522501, India
This paper will describe the technologies available in Big data . The brief analysis on quantum computers is also expressed in it. The Simulation of Quantum algorithm like grover and division clustering is presented. Quantum clustering. Advantage of quantum computer over supercomputers.
Index Terms—Big data, Dynamic clustering, Qubits, Quantum clustering.

I. Introduction

H

uman society is currently generating on the order of a billion billion (1018) bits of data a year. Extracting

useful information from even a small subset of such huge data set is difficult. A wide variety of big data processing techniques have been developed to extract from large data sets the hidden information in which one is actually interested. Topological techniques, for analyzing big data represent a sophisticated and powerful tool by its very nature, topology reveals features of the data that do not depend on how the data was sampled, how it was represented, and how it was corrupted by noise. A quantum computer could, in theory, be used to calculate solutions in days, maybe even hours, that would take a normal computer thousands of years to produce.
A. Quantum Information Processing
a. Qubits

A qubit is as physical entities carries information in a quantum computer.It is a quantum system which has two states |0> and |1>, and this is represented in two-dimensional vector space over the the complex numbers C square.So it takes two complex numbers to fully represent it.The computational (or standard) basis corresponds to the two levels |0> and |1>
The qubit does not always have to be in either |0> or |1>; it can be in an arbitrary quantum state, denoted |sigma>, which can be any superposition |sigma>=a|0>+ß|1> , of the basis vectors. The superposition quantities a and ß are complex numbers; together they obey |a|2+|ß|2=1.

Interesting things happen when quantum systems are measured, or observed. Quantum measurement is described by the Born rule. In particular, if a qubit in some state |sigma> is measured in the standard basis, the result 0 is obtained with probability |a|2, and the result 1 is obtained with the complementary probability |ß|2. Interestingly, a quantum measurement takes any superposition state of the qubit, and projects it to either the state |0> or the state |1> with a probability determined from the parameters of the superposition.

What we have described here is the abstract notion of a qubit. The prototype quantum computer you interact with in the IBM Quantum Experience uses a physical type of qubit called a superconducting transmon qubit, which is made from superconducting materials such as niobium and aluminum, patterned on a silicon substrate.

Physically, for this superconducting qubit to behave as the abstract notion of the qubit, the device must be at drastically low temperatures. In the IBM Quantum Lab, we keep the temperature so cold (15 milliKelvin in a dilution refrigerator) that there is no ambient noise or heat to excite the superconducting qubit. Once our system has gotten cold enough, which takes several days, the superconducting qubit reaches equilibrium at the ground state |0?.

To get a sense for what “ground state” means, try running the first score file below in simulation mode (or look at some cached runs on the real device). Here, the qubit is initially prepared in the ground state |0?, then is followed by the standard measure. From your execution results, you should find in the ideal case (and with very high probability for the cached runs) that the qubit is still in the ground state. In the real device runs, you can observe that there is some error, with some shots giving a |1? instead, which is due to imperfect measurements and some residual heating of the qubit.

b. Bloch Sphere

A Bloch Sphere is 3-D sphere which represents states of qubit in form of vector form. This could easily show more than 1 state simultaneously.
B. Types of Quantum Computers
a. Quantum Annealers

The quantum annealer is least powerful of all and most restrivctive form of quantum computers. Its easy to build but yet performs only specific application.The consensus of scientific community is that quantum annealer has no known advantage over conventional computers.
Application
· Optimization Problems

Generality

· Restrictive

Computational power

· same as traditional computer

Difficulty to build

· Fairly Easy

b. Analog Quantum Computers
Analog Quantum computers-The analog quantum computers will be able to simulate complex quantum interactions that are inractable for any conventional machine,or combination of these machines. It is conjectured that quantum analog computers will contain nearly 50 to 100 qubits.

Applications
· Quantum Chemistry

· Optimization problems

· Quantum Dynamics

· Sampling

· Material Science

Generality

· Partial

Computational power

· High

c. Universal quantum computing
Universal Quantum- It is the most powerfull category of qunatum computers and the most general and hardest to build, posing a number of difficult chanllenges. Current estimates say that this kind of quantum computers will have more or equal to 100,000 physical qubits.
Application

· Secure computing

· Big data
· Machine Learning

· Cryptography

· Material Science

· Optimization problems

· Searching

· Quantum Dynamics

· Sampling

· Cryptography

Generality

· Complete with known speed up

Computational Power

· very high

II. Quantum algorithms
Most authors will be able to prepare images in one of the allowed formats listed above. This section provides optional, additional information on preparing PS, EPS, and TIFF files. No matter how you convert your images, it is a good idea to print the files to make sure nothing was lost in the process.

For more information on graphics files, please go to www.ieee.org/publications_standards/publications/authors/ authors_journals.html and click on the link “Using Microsoft Products or PDFs to Submit Graphics.”
A. Grover’s Search Algorithm
In the past few decades, we have gained more and more ability to access massive amounts of information and to make use of computers to store, analyse and manage this data. Recent studies have shown the great progress towards the physical realization of a quantum computer. Systematically described the first universal quantum computer that is accepted by now. In 1982, Benioff studied the question whether quantum computer was more computationally powerful than a conventional classical Turing machine. He mapped the operation of a reversible Turing machine onto the quantum system and thus exhibited the first quantum-mechanical model of computation, which discovered the potential power of quantum computer. In 1994, American scientist Peter Shor proposed an algorithm that factor a large integer in polynomial time, which is the first practical quantum algorithm. In 1996, Grover proposed an algorithm that provides a speedup of 𝑁 in order of magnitude than classic algorithm in searching an unsorted database. Although the purpose of Grover's algorithm is usually described as "searching a database", it may be more accurate to describe it as "inverting a function". Quantum computation and quantum information is the study of the information processing task that can be accomplished using quantum mechanical system. Quantum computation has many features that differ from classical computing in that quantum state has the characteristic of coherence and entanglement. Grover's algorithm can also be used for estimating the mean and median of a set of numbers, and for solving the collision problem. In addition, it can be used to solve NP-complete problems by performing exhaustive searches over the set of possible solutions. This would result in a considerable speedup over classical solutions, even though it does not provide the "holy grail" of a polynomial-time solution.

B. Topological and geometric analysis of data
If you have a scanner, Extracting useful information from large data sets can be a daunting task. Topological methods for analyzing data sets provide a powerful technique for extracting such information. Persistent homology is a sophisticated tool for identifying such topological features– connected components, holes, or voids – and for determining how such features persist as the data is viewed at different scales. This paper provides quantum machine learning algorithms for calculating Betti numbers in persistent homology, and for finding eigenvectors and eigenvalues of the combinatorial Laplacian. The algorithms provide an exponential speedup over the best currently known classical algorithms for topological data analysis.

Procedural Steps

Classical Cost
Quantum Cost

	Input pairwise distances, n points
	O(n2) bits

	O(n2) bits

	Construct simplicial complex
	O(2n)
	ops O(n2) ops on O(n) qubits

	Estimate all Betti numbers
	O(2n log(1/δ)) ops
	O(n3/δ) quantum ops

	Diagonalize combinatorial Laplacian
	O(22n log(1/δ)) ops
	O(n5/δ) quantum ops

Here, δ is the multiplicative accuracy to which the Betti numbers and the eigenvalues of the combinatorial Laplacian are determined. Note the tradeoff between the exponential quantum speedup and accuracy: the quantum algorithms obtain an exponential speedup over classical algorithms but provide an accuracy that scales polynomially in 1/δ rather than exponentially. This feature arises from the nature of the quantum phase estimation/matrix inversion algorithms, which obtain their exponential speed up by estimating eigenvectors and eigenvalues using a ‘pointer-variable’ measurement interaction [38]. By contrast, classical algorithms need only keep O(log(1/δ)) bits of precision, but must perform O(22n) steps to diagonalize 2n × 2n sparse matrices. To recapitulate:

(1) The classical data is mapped via a quantum random access memory into a tensor product quantum state.

(2) The quantum data is processed using standard techniques of quantum computation: distances between vectors are evaluated, simplices of neighboring vectors are identified, and a simplicial complex is constructed. The simplicial complex depends on the grouping scale ǫ. We construct a quantum state that represents the filtration of the complex – the set of simplicial complexes, related by inclusion, for different ǫ. This quantum state contains exponentially fewer qubits than the number of bits required to describe the classical filtration of the complex.

(3) Now construct homology in quantum parallel. Perform the boundary map to associate each simplex in the filtration with its boundary. Standard techniques of quantum information processing then allow one to identify the dimensions of the kernel and image of the boundary map for each k. This in turn allows us to calculate Betti numbers for each k and each scale ǫ.

(4) Use the quantum phase algorithm to calculate the eigenvalues and to construct the eigen spaces of the combinatorial Laplacian at each scale. This construction gives us geometric information about the data set.
Unstructured data processing with high-performance computing
C. Dynamic Quantum Clustering
How does one search for a needle in a multi-dimensional haystack without knowing what a needle is and without knowing if there is one in the haystack? This kind of problem requires a paradigm shift - away from hypothesis driven searches of the data - towards a methodology that lets the data speak for itself. Dynamic Quantum Clustering (DQC) is such a methodology. DQC is a powerful visual method that works with big, high-dimensional data. It exploits variations of the density of the data (in feature space) and unearths subsets of the data that exhibit correlations among all the measured variables. The outcome of a DQC analysis is a movie that shows how and why sets of data-points are eventually classified as members of simple clusters or as members of - what we call - extended structures. This allows DQC to be

successfully used in a non-conventional exploratory mode where one searches data for unexpected information without the need to model the data. We show how this works for big,

complex, real-world datasets that come from five distinct fields: i.e., x-ray nano-chemistry, condensed matter, biology, seismology and finance. These studies show how DQC excels at uncovering unexpected, small - but meaningful - subsets of the data that contain important information. We also establish an important new result: namely, that big, complex datasets often contain interesting structures that will be missed by many conventional clustering techniques. Experience shows that these structures appear frequently enough that it is crucial to know they can exist, and that when they do, they encode important hidden information. In short, we not only demonstrate that DQC can be flexibly applied to datasets that present significantly different challenges, we also show how a simple analysis can be used to look for the needle in the

haystack, determine what it is, and find what this means.Saving Files in TIFF Most graphing programs allow you to save graphs in TIFF; however, you often have no control over compression or number of bits per pixel. You should open these image files in a program such as Microsoft Photo Editor and re-save them using no compression, either 1 or 8 bits, and either 600 or 220 dpi resolution (File > Properties; Image > Resize). See Section III.C for an explanation of number of bits and resolution.

D. Existing Programming languages`
Concerning the design of both practical as well as formal programming languages there is still much room for development. For practical languages, the main challenges are probably the creation of powerful constructs to abstract from the very machine-oriented model of quantum circuits towards higher-level programming, as well as the development of compilers and optimisers that get the best results out of the available resources. For formal languages, challenges are expressive, easy-to-read languages with well-defined semantics, as well as support in reasoning about programs. Such support can consist of powerful mathematical laws that aid the manual proof, as well as mechanised proof systems where the computer carries out parts of the analysis. Ultimately, the two approaches could be unified, resulting in one language that is both suited for actual programming and execution of programs and protocols as well as for analysing these programs and giving rigorous proofs of their correctness.
a. QCL

This language consists of a full-fledged set of classical operations (loops, branching, elementary and structured datatypes, etc.) augmented with quantum types. The elementary quantum datatype is the quantum register qureg. It represents a reference to one or several qubits on a so-called quantum heap (e.g., an external quantum computer). On these registers elementary operations can be performed: initialisation, unitary transformations, and measurements.

However, a special feature is the ability to write complex quantum operators. These operators are defined like classical procedures and functions, but they take one or more quantum registers as arguments. Unlike a classical procedure that applies the same operations to the arguments, an operator can be inverted and—in the special case of a basis permutation—provides automatic management of scratch registers. Besides the basic register type, there exist several variants of this datatype. Though the physical interpretation of these kinds of registers is identical, the different types impose different constraints on the operations on these bits. A constant register quconst implies that the operator may not modify the register (e.g., the controlling qubit in a CNOT might be a constant register). A void register quvoid is guaranteed to be empty at the beginning of the execution of an operator e.g., when implementing a classical function

f as |xi|yi 7! |xi|y _ f(x)i

 the second register is usually assumed to be empty. A scratch register quscratch is also assumed to be empty at the beginning, and must also be left empty afterwards.

The approach that operators are defined like procedures has the advantage that programs can be written in a very homogeneous way: a classical function and the corresponding quantum function are represented by essentially the same code. Further, rather powerful constructs like quantum branching are supported with this approach The language QCL has been implemented and comes with a simulator for testing.
b. Q language

In contrast to the language Q has not been designed from scratch, but uses the object oriented features of C++ to implement quantum registers and operators. This has the advantage that the rich and powerful classical abilities of C++ and existing C/C++-libraries may be used, and that no special compiler needs to be

implemented. A quantum register is a class Qreg which—as in QCL—represents a list of references to qubits. Another class Qop represents operators which can be applied to registers. Several operations on operators are available: inversion, composition (sequential), reordering of input/output qubits, application to a registers, making a controlled operator, creation from a classical function, etc.

Complex operators can therefore be build up from elementary ones. One problem should be noted: The creation of an operator from a classical function (i.e., constructing the operator |xi|yi 7! |xi|y _ f(x)i) takes a pointer to a function as argument, i.e., the function is given as a black box. It is easy to see that creating the operator needs exponential number of queries to the function, even for simple functions.The advantage of first constructing the operators and only then applying them to the register it that: the underlying library can optimise a given operator at construction time. If the operator is applied many times, it only has to be optimised once. The disadvantage is that—in contrast to QPL—a more restricted style of programming has to be used, resembling the creation of quantum

circuits. The language Q has been implemented together with a simulator.

E. Benefits

In this section we present several possible features of quantum programming languages. Some of these can already be found in some of the languages proposed in the literature, while others are still open challenges.

a. Quantum Branching

By quantum branching we mean that the value of a given qubit conditions the execution of some piece of code. If the qubit is in superposition, execution and non-execution also happen in superposition. In this respect it differs from classical branching which measures whether the condition is fulfilled, thereby destroying the superposition. A very simple example for quantum branching is the CNOT-gate where one qubit is flipped if the other has value 1. Two programs that differ only by a change of global phase have the same observable behaviour. However, when subject to a conditional execution, these two programs may suddenly behave

differently (consider e.g. a conditional phase flip, which is different from the identity). Further, measurements and erasures do not seem to have a natural meaning when subject to a quantum condition. These two points make it more difficult to design program semantics that encompass both irreversible operations (measurements, erasures) and quantum branching. The language QCL implements quantum branching. In special cases, it even provides the possibility of using assignments to classical variables and measurements inside conditioned code. Furthermore, quantum loops are supported, as long as there is a classically

known upper bound.

b. Continuous classical Outputs
Most algorithms take an input, calculate, and give an output. However, in some cases a program continuously outputs classical information, e.g., information about its progress. This output can be observed before the program’s termination, and moreover, even a non-terminating program may have output. A further application of continuous output might be to describe the externally visible behaviour (i.e., the trace) of a process, e.g., in a cryptographic setting the required security properties might be formulated in terms of the externally observable behaviour of processes.

When following the hybrid approach of Section 3.4 it is sufficient to add the possibility of output to the underlying classical language. To the best of our knowledge, this has not yet been formally done. In the case of density-operator-based semantics this problem has been investigated.

c. Concurrent processes
For cryptologic applications it is very important to be able to express and to have semantics for the interaction of concurrent processes. For cryptologic applications it is very important to be able to express and to have semantics for the interaction of concurrent processes. Yet formally specifying the behaviour of the scheduling turns out to be difficult. Examples for languages with concurrent processes are QPAlg and CQP. To our knowledge, the problems with nondeterministic scheduling outlined remain as yet unsolved.

d. Infinite Data types

Most languages proposed so far only have quantum datatypes which live in a finite dimensional Hilbert space. Many quite elementary datatypes like integers or strings cannot be represented in such a model. However, since the mathematics on countably dimensional Hilbert spaces is very similar to that on finite dimensional ones, in most cases a language designed for finite quantum datatypes can easily be extended to the countably dimensional case. Only the uncountably dimensional case (e.g., real numbers) present a major definitional challenge. To the author’s knowledge, infinite quantum datatypes have not yet been presented in the literature.

e. Higher order data types

While today’s quantum algorithms and protocols can sufficiently easily be expressed in terms of qubits as datatypes, more complex datatypes can ease the presentation. E.g., a high-level presentation of Shor’s algorithm for solving the discrete logarithm in arbitrary groups would operate on group elements, and only when considering an actual implementation would one fix a concrete encoding of group elements as strings of qubits. Future development in quantum algorithms might require still more complex quantum datatypes, e.g., tupels, lists, records, etc. Trying to incorporate such datatypes presents us with a definitional challenge: Assume a program holds an list a in one quantum register, and an index i in another quantum register. Now the program accesses the i-th element of a. Since the superposition must not be destroyed (unless an explicit measurement occurs) we cannot check whether a indeed contains an i-th element and then raise an error. Therefore semantics coping with such advanced higher-order datatypes must specify a behaviour for such “errors in superposition”. To the author’s knowledge, only in QPL have semantics for higher-order datatypes been specified. However, these datatypes are not completely quantum, they represent classical tupels and lists of quantum bits, i.e., in the case of lists the length of the list is a classically observable property. Due to this restriction the aforementioned problems do not occur.

III. Roles in big data
We havereviewed the available literature on Big Data Analytics using Quantum Computing for Machine Learning for Unsupervised data and its current stateof the art. We categorized the Quantum Machine learning in

different subfields depending upon the logic of their learning

followed by a review in each technique. Quantum Walks used to

construct Quantum Artificial Neural Networks, which

exponentially speed-up the quantum machine learning algorithm

is discussed. Quantum Supervised and Unsupervised machine

learning and its benefits are compared with that of Classical

counterpart. The limitations of some of the existing Machine

learning techniques and tools are enunciated, and the

significance of Quantum computing in Big Data Analytics is

incorporated. Being in its infancy as a totally new field, Quantum

computing comes up with a lot of open challenges as well. The

challenges, promises, future directions and techniques of the

Quantum Computing in Machine Learning are also highlighted.e.g., “A·m2.”

A. Quantum Computers Will Make Short Work of Big Data

Depending on which website you trust and your faith in statistics, about 90% of all the data in the world was created in the last 2 years. That’s insane. We’re generating 2.5 quintillion bytes of data each day. At that pace, it’s no wonder we haven’t made much progress toward getting more out of this data deluge. We have more data then we know what to do with, and almost no way to process it. The best part: our rate of data creation is growing almost exponentially. For example, in 2016 we sent a little more than 3.5 million text messages per minute. In 2017 so far, we’ve sent over 15 million texts per minute. 15 million!

This is where the real power of quantum computing will shine. Few doubt there will be an increase in processing speed in the quantum age. John Preskill coined the term “quantum supremacy” to describe the potential for quantum computers to solve problems that classical computers can’t, because they’re not powerful enough or fast enough. (Rumors that Google would demonstrate quantum supremacy by the end of 2017 were slightly exaggerated.)

Not By Speed Alone, this fabled increase in speed doesn’t mean we can celebrate the end of the world’s computational problems. But this type of speed does dramatically change how we interact with big data. Mostly because it allows us to execute quantum algorithms. Imagine you have a database of financial data (weather data, genetic data, etc.) with 100 quintillion entries. A classical computer would take an impractical amount of time to search for an item in that data set. It would have to look at half the entries. Now imagine you wanted to do something interesting with that data, like analyze it. You would need to pay big bucks for lots of time on a modern-day supercomputer. But if you had access to a quantum computer, you could use Grover’s algorithm to get a quadratic increase in speed. You would only have to look at 10 billion entries to find the desired item. And the speed benefit you would see on searches would increase with the size of the data set.

Quantum computing doesn’t just have the potential to improve search speed. Research suggests that we may see an exponential speed increase in big data classification and topological analysis of complex data sets. Both of these cases involve applying quantum computing to existing machine learning systems (foundational for artificial intelligence, by the way).

Researchers at MIT and Google have demonstrated mathematically that a support vector machine based on existing machine learning algorithms can be implemented on a quantum computer to obtain an exponential speed increase in data classification and regression analysis. One of those same big brains at MIT, Seth Lloyd, collaborated with researchers at USC and the University of Waterloo to propose a new theory on how to execute topological analysis using a quantum computer. Topological analysis is for analyzing large data sets that have lots of dimensions, lots of holes, and lots of noise.

B. Reasons why and how IT orgs use HPCs to meet Big data and analytics needs

a. The Dataset Fits Into Memory

If a dataset is terascale or you're combining multiple terascale datasets, the data may too large to fit into memory. One way to deal with it is to break it down into smaller pieces and analyze the pieces individually. While it's possible to do many kinds of analysis on the fragments of data, more types of analysis can be done when all of the data is available in memory and the analyses can be executed faster. It is also possible to ask more types of questions, expand the scope of discovery, and do more correlations.

One example is identifying fraudulent healthcare claims, which involves massive amounts of data. By bringing all the data into memory, it's possible to discover patterns that are not apparent if the claims are viewed in isolation, according to Ken Gilbert, director of Business Analytics at the University of Tennessee office of research and economic development, in an interview.

b. The Computational Capability Is Powerful

Some of the most sophisticated companies in the world are using supercomputers to expand their computational capabilities. The ones that already have supercomputers sometimes team up with a university or national lab because they want access to a more powerful resource, or a collection of resources, that can solve particular problems efficiently and effectively.

Experimentation and product development are extensive and time consuming. In the pharmaceutical industry HPCs plays a huge role in expediting drug development and reducing the costs of drug development.

Aircraft manufacturers use supercomputers to solve heavily computational fluid dynamics problems. Businesses and cities use supercomputers to improve the efficiency of traffic flow with data generated by street sensors. Businesses use that data to optimize truck routes and delivery times, as well as to reduce fuel costs and carbon emissions. Cities use it to improve traffic flow, improve disaster mitigation, and efficiently execute evacuation strategies.

c. The Interonnect is critical

Companies are effectively using their own resources and the cloud to process massive amounts of data faster than they have before. Supercomputing is a better option when the interconnection speed among nodes is critical.

Interconnect makes a huge difference in the execution time for the problem, You might have an enormous cluster, but at some point the cluster is not going to be effective for someone who has to run a big enough problem over the entire cluster. The interconnect is critical to how effective the parallel computer will be.

The determination of whether to use the cloud or a supercomputer can happen pretty quickly once one understands the data, the mobility of the data (the motion the data goes through in terms of processors and storage), how much compute power is needed, and how many nodes are needed.

d. Advanced Modeling Capabilities

Companies manufacturing everything from candy to tires are using supercomputers, and the computational scientists at JICS, to help fine-tune their modeling capabilities. For a tire company, that means modeling the manufacturing process as well as the individual components within each phase of the process, including the rubber and polymers and other things required to produce a tire. It's a very layered and complex process that leads to several business decisions including the products that will be used to produce the tire, the process developed to make the tire, how safe and reliable the tire is and how well the tire will sell. Uncertainty quantification is critical since lives depend on safe, reliable tires.

"There are different types of data, including simulation data and conclusions of the analyses based on all the data you have [which might include] some experimental data," said JICS director Tony Mezzacappa. "You bring experimental data into the models as input, and then your models will generate further output that tells you what happens under certain circumstances given that experimental input and that model of the tires. So you have error bars around your experimental data, around your simulation data, and you have methods in uncertainty quantification where you purposely vary the inputs and outputs, and certainly how you conduct the simulation, and see how the output varies. Do you end up with a tire that is equally safe or not?"

e. Expand what’s possible

Organizations unfamiliar with the capabilities of today's supercomputers or even the cloud can unknowingly limit themselves by failing to understand what is possible to achieve computationally. Limiting the scope of problem solving capabilities to current computing resources is more constraining than imaging the outcome and then figuring out how to solve the problem.

When a problem exceeds the computational abilities of existing systems, companies turn to the cloud, or an organization like JICS, depending on what they're trying to accomplish. The more computationally advanced companies reach out to JICS when they need a powerful resource – compute power, memory, or both – or a collection of resources that can be used in tandem to execute a workflow across different systems. such as a shared memory computer and a distributed memory computer.

f. It speeds Discovery

Large, established companies have been using supercomputers for decades but some startups also want to use them. For example, Atomwise, a startup determined to change the way drugs are discovered and developed, used an IBM supercomputer to screen 7,000 drugs that might be effective in treating Ebola. Four months after initiating its virtual search, it discovered evidence of two possibilities. JICS and ORNL are being tapped by startups.
In summary,

Big Data has long been an important part of high performance computing – but recent technology advances, coupled with massive volumes of data and innovative new use cases – have resulted in data intensive computing becoming even more valuable for solving scientific and commercial technical computing problems.

C. Current HPCs Challenges Implementing Big Data Analytics
HPC offers immense potential for data-intensive business computing. But as data explodes in velocity, variety, and volume, it is getting increasingly difficult to scale compute performance using enterprise class servers and storage in step with the increase. One estimate is that 80% of all data today is unstructured; unstructured data is growing 15 times faster than structured data4 and the total volume of data is expected to grow to 40 zettabytes (1021 bytes) by 20205. To put this in context, the entire information on the World Wide Web in 2013 was estimated to be 4 zettabytes. The challenge in business computing is that much of the actionable patterns and insights reside in unstructured data. This data comes in multiple forms and from a wide variety of sources – information gathering sensors, logs, emails, social media, pictures and videos, medical images, transaction records and GPS signals. This deluge of data is what is commonly referred to as Big Data. Utilizing Big Data solutions can expose key insights for improving customer experiences, enhancing marketing effectiveness, increasing operational efficiencies and mitigating financial risks. It’s very hard to linearly scale compute performance and storage to process Big Data. In a traditional non-distributed architecture, data is stored in a central server and applications access this central server to retrieve data. In this model, scaling is linear – as data grows, you simply add more compute power and storage. The problem is, as data volumes grow, querying against a huge, centrally located data set becomes slow and inefficient, and performance suffers.

D. Editing Service

IEEE has partnered with SPi Publisher Services to offer pre-submission professional editing services to IEEE authors. SPi copyedits and typesets more than 1 million pages per year for over 600 journals. Authors who would like assistance with English grammar and usage prior to submitting their manuscripts for review or during the review process can go to www.prof-editing.com/ieee to submit a manuscript for copyediting. A link is provided on the Manuscript Central Web site. SPi copyeditors will edit for grammar, usage, organization, and clarity. Authors can use the service, at their own expense, as often as desired. Cost estimates are available on-line, typically about $100 for a four-page article. Edited manuscripts are generally returned to the authors within two weeks of submission.

IV. Conclusion

A conclusion section is not required. Although a conclusion may review the main points of the paper, do not replicate the abstract in the conclusion. A conclusion might elaborate on the importance of the work or suggest applications and extensions.

Appendix

Appendixes, if needed, appear before the acknowledgment.

References

[1] G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of Lipschitz-Hankel type involving products of Bessel functions,” Phil. Trans. Roy. Soc. London, vol. A247, pp. 529-551, Apr. 1955.

