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In this note, we give a complete classification of finite groups in which all noncyclic proper
subgroups have the same order.
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1. INTRODUCTION

Throughout this note all groups are assumed to be finite. It is known that a group G is said to be
cyclic if G can be generated by only one element. And a group G is said to be a minimal noncyclic
group if G is noncyclic but all proper subgroups of G are cyclic. In [3], Miller and Moreno classified
minimal noncyclic groups. They had:

Theorem 1 [3] — A groupG is a minimal noncyclic group if and only ifG is one of the following
groups:

(1) Zp × Zp, where p is a prime;

(2) Q8, the quaternion group of order 8;

(3) 〈a, b | ap = bqm
= 1, b−1ab = ar〉, where p and q are distinct primes and r �≡ 1 (mod p),

rq ≡ 1 (mod p).

As a generalization of [3], Li and Zhao in [1] classified groups in which all noncyclic proper
subgroups have exactly one conjugacy class.
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Theorem 2 [1, Theorem 3.1] — A group G is a group in which all noncyclic proper subgroups
have exactly one conjugacy class if and only if one of the following statements holds:

(1) G = Zp2 × Zp for some prime p;

(2) G = 〈a, b | ap2
= bp = 1, b−1ab = a1+p〉 for some odd prime p;

(3) G = Zp × Zp × Zq, where p and q are distinct primes;

(4) G = Q8 × Zp for some odd prime p;

(5) G = H × Zt, where H = 〈a, b | ap = bqm
= 1, b−1ab = ar〉, where p, q and t are distinct

primes and r �≡ 1 (mod p), rq ≡ 1 (mod p);

(6) G = 〈a, b | ap2
= bqm

= 1, b−1ab = ar〉, where p and q are distinct primes and r �≡
1 (mod p2), rq ≡ 1 (mod p2);

(7) G = Zp
2 � Zq and [Zp

2, Zq] = Zp
2, where p and q are distinct primes and q � p − 1;

(8) G = Q8 � Z3 and [Q8, Z3] = Q8;

(9) G = 〈a, b | ap = bqm
= 1, b−1ab = ar〉, where p and q are distinct primes, m ≥ 2 and

rq �≡ 1 (mod p), rq2 ≡ 1 (mod p).

As a generalization of [1, Theorem 3.1], Meng et al. [2] classified groups in which all noncyclic
proper subgroups have exactly two conjugacy classes.

It is obvious that any two conjugate subgroups must have the same order but any two subgroups
of the same order might not be conjugate. In this note, as a further generalization of [1, Theorem
3.1], we will give a complete classification of groups in which all noncyclic proper subgroups have
the same order. For such groups, we have:

Theorem 3— LetG be a group having at least one noncyclic proper subgroups. Suppose that all
noncyclic proper subgroups of G have the same order, then one of the following statements holds:

(1) G is one of groups in [1, Theorem 3.1];

(2) G = Zp × Zp × Zp, where p ≥ 2 is a prime;

(3) G = D8, the dihedral group of order 8;

(4) G = 〈a, b | ap = bp = cp = 1, [a, b] = c, [a, c] = [b, c] = 1〉, where p is an odd prime;

(5) G = Q16, the quaternion group of order 16.


