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TIPS

1. Invest time learning the language of Mathematics (with all of its
special cases and exceptions and conventions).

2. Review constantly.

3. Do assignments, tutorials, etc. Practise, practise, practise. Read
textbook/supplementary notes. Ideally read the
textbook/supplementary notes material on a topic before the
relevant lecture. You will have to do significant work outside of the
classroom to master the material.

4. Attend and engage with lectures and tutorials. This represents the
most efficient way to learn the material. Come prepared and ask
questions if you do not understand something.

5. Speak to me as soon as you feel you may be falling behind.

6. In summary: KEEP UP. This will be a very fast-paced class and
falling behind is very unwise. Mathematics is very hierarchical and
you generally progress only by first knowing well what went before.
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Here we begin to look at building and extending mathematical
models of biological systems, with a focus on modelling the
time evolution of the “population” of various species.

As in most of mathematics and life, you will not likely become
an expert in mathematical modelling overnight. However by
keeping a focus on the big picture, you will gradually see the
key features which go into developing a good model and
become better and better at modelling. Practice and
experience will be two of your key allies in becoming proficient
in the application of mathematics to the life sciences. Try not
to be too distracted by the “processes” but instead focus on
the “concepts”.
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Aside 1 - Dimensional Analysis

Continuous Population Models for Single Species - Introduction

‘‘The motivation for modelling . . . is to further our understanding of

the underlying processes since it is only in this way that we can make

justifiable predictions.’’ from Mathematical Biology 1: An Introduction by
J.D. Murray.

I When creating and analysing mathematical models, some of the key ingredients

are:
I A good understanding of differential and integral calculus;
I A good understanding of the biological/physical etc problem being

modelled, and a clear idea of what you want the model to tell you about
that problem (although it could be argued this is not always necessary).

I Common sense.

I Patience - as with most things in mathematics, you get better at

modelling the more you do it.
I We typically start with simple models with simplifying assumptions and then

adjust to more “complex” models as those assumptions are relaxed. This is the
pattern we will largely follow in this course.

I It is important to always keep in mind the assumptions (including hidden ones)
which go into a model so that you have some idea of its limitations.
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Aside 1 - Dimensional Analysis

I There are many books on mathematical modelling which you can
consult to find out more.

I For example, the book Elementary Differential Equations by
William Boyce and Richard DiPrima (Wiley) has a nice summary of
typical steps in the modelling process, which I have included
(paraphrased and slightly modified) in the appendix - Appendix A.

I However, I think it might be better for now to keep things fairly
simple and focus on the big picture: try to understand the models
presented, and use them as examples of how to construct your own
models. AND USE COMMON SENSE.

 Vocabulary Alert: per capita means (average) for each individual.
E.g. the per capita birth rate is the average number of births for
each individual in a population. You will see the term per capita
often in what follows.
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Aside 1 - Dimensional Analysis

Aside 1 - Dimensional Analysis

Primary Dimension SI Unit
Mass M kilogram kg
Length L metre m
Time T second s
Temperature T , q,Θ Kelvin K
Electric current I Ampere A
Amount of light C candela c
Amount of matter N mole mol

7→ When setting up model equations, one important check is to ensure that the
dimensions on both sides of each equation match.

7→ The standard notation for indicating the dimension of a quantity is to put
square brackets around it.

7→ E.g. from Newton’s law Force = mass × acceleration or F = ma. Thus

[F ] = ML/T 2 so in SI unit is kg m/s2.

7→ Note in mathematical models of population, the population may be
measured directly in the number of members of a species or less directly as
in a density or concentration.
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The Exponential Growth (Malthusian) Model

I A very simple model of the growth of the population of a species, e.g. bacteria,
under ideal conditions - e.g., unlimited space, no disease, no predators.

I Thomas Malthus observed (in 1798) that (over relatively small time frames),
under the assumptions above, the population of a species (bacteria, humans,
other animals, etc.) grew at a rate which is proportional to the size of the
current population.

I Define appropriate dependent and independent variables, and write out the last
observation as a mathematical equation:

ANSWER

Let N = N(t) (dependent variable) be the population at time t
(independent variable). Then

dN

dt
= rN, where r is a constant.

I This is both a linear and separable ODE, and with initial condition N(t0) = N0,
the solution is

N(t) = N0e
r(t−t0) or N(t) = N0e

rt if t0 = 0,

hence the name the exponential model. r is called the net per capita growth
rate or Malthusian parameter  see alternative derivation next for reason.
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Alternative Derivation A

↪→ For variety, here is another way the Malthusian ODE could have been derived.

↪→ Let N(t) be the population at time t and consider a small time increment δt.

↪→ Let b be the per capita birth rate - so b is the number of births to an individual
per unit time (NOTE b would typically NOT be a whole number since it is an
average). Thus bδt is

the total number of births to each individual from time t
to t + δt

.

↪→ Similarly, let d be the per capita death or mortality rate. Thus dδt is

the total
number of deaths to each individual from time t to t + δt

.

↪→ Finally, assume there is no net migration, so that births and deaths are the only
way the population changes. Then

N(t + δt) = N(t) +bδtN(t)−dδtN(t) ⇒
N(t + δt)− N(t)

δt
= (b−d)N(t)

and taking limits as δt → 0, letting b − d = r , which is clearly the net per
capita growth rate (if > 0) or decline (if < 0), we again get the Malthusian
ODE

dN

dt
= rN,
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Alternative Derivation B

↪→ Yet another approach to deriving the Malthusian ODE involves starting with the
basic conservation equation for a population at time t, N(t): the rate of change

dN

dt
= rate in −rate out = rate of births − rate of deaths + rate of migration

↪→ The Malthusian ODE follows from making the simplifying assumptions that:
I there is no migration (a closed system), and

I the birth and death rates at any time t are both proportional to the

population at time t, N(t).

↪→ Thus taking those proportionality coefficients to be b and d respectively, we
again get

dN

dt
= bN − dN = (b − d)N = rN

where r = b − d
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I ASIDE: Dimensional Analysis

• → Use dimensional analysis to determine the dimensions of r
in N(t) = N0e

r(t−t0)

• → ANSWER

Loosely speaking,

[N] = “Number of individuals ′′ or “Population′′

which is the same as [N0], so for the equation to be
consistent er(t−t0) must be a dimensionless (pure)
number.
That is only possible if [r ] = 1/[t − t0] thus [r ] = 1/T .

• → Note you could have come to the same conclusion
performing the dimensional analysis on dN

dt
= rN instead.

11 / 56



Continuous (ODE) Models of Population Growth/Decline for Single Species
Preliminary Basic Single Species Population Models

Metapopulations
Appendix

The Exponential Growth (Malthusian) Model
The Logistic Model (and related models)
Aside 2 - Nondimensionalisation of Equations

I NOTE the Malthusian ODE
dN

dt
= rN is clearly autonomous and it is also easy

to see that there is only one equilibrium solution,

N(t) = 0

, which is unstable if
r > 0 and stable if r < 0.

I EXAMPLE 1 The UK population was 57 439 000 in 1991 and 59 113 000 in
2001. Use this information and a Malthusian model of population growth to
estimate the population in 2011 and compare your calculated result with the
actual figure of 63 182 000.

I ANSWER

First we need the per capita growth rate, r , over the period 1991 to
2001 and will assume it is the same over the next ten years. For simplicity we
take 1991 to be year 0 so t0 = 0 and

N(t) = N0e
rt = 57439000ert , so t = 10 (year 2001)⇒ N(10) = 57439000e10r = 59113000.

To estimate r we take ln of both sides:

ln(57439000)+10r = ln(59113000)⇒ r =
ln(59113000)− ln(57439000)

10
≈ 0.00287273512644255

Thus in 2011 we expect the population to be
N(20) = 57439000e0.00287273512644255(20) ≈ 60 835 787 relative error
0.0371341997496619, so not bad but not great.

I Any ideas about why this estimate is a bit low? Higher immigration in the
2001-2011 period as compared to 1991-2001 is likely a factor, hence a larger r
should have been used.
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I So a simple change would be to modify our assumption that r was constant
over the period 1991 to 2001 and assume that it depended on t, so r = g(t) -
beginning with the simplest assumption that it is linear over this period and
continued growing at the same rate over the period 2001 to 2011. We assume
g(t = 0) = 0 since evaluating N(t = 0) gives us no insight into the value of g ,
so g(t) = αt for some constant α which we will now find.

I This means that we have to solve the IVP

with linear ODE
dN

dt
= αtN, N(0) = 57439000 . . .⇒ N(t) = 57439000eαt

2/2, but then

N(10) = 57439000e50α = 59113000⇒ α =
ln(59113000/57439000)

50
≈ 0.000574547025288529

So the linear function g(t) = 0.000574547025288529 t ⇒
dN

dt
= 0.000574547025288529 tN.

And the solution to this linear ODE is N(t) = 57439000e0.000574547025288529t2/2.

So, as expected, in 2001 N(10) = 59113000 (exact answer). And in 2011,

N(20) ≈ 64 433 451 for a relative error of 0.0198070775144054.

I So the estimate is better now - relative error reduced by about one-half.
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The Logistic Growth Model  More realistic population modelling

 The exponential growth/decay model is not very practical over long
time frames since the “ideal conditions” of its assumptions are
simply typically not present. If r > 0 the population grows forever
while if r < 0 the population eventually dies out.

 Note even the modified ODE with the linear growth rate g(t),
dN

dt
= 0.000574547025288529 tN, is not very realistic since

lim
t→∞

N(t) =∞, i.e., the population grows forever.

 It is reasonable to expect that the growth rate, r , DOES depend on
the current population, r = g(N)⇒ dN

dt = g(N)N, (as opposed to
depending directly on t) but a more realistic model for g is needed
which matches empirical observations (real-life observations).

 The Logistic Growth Model is an attempt to derive a simple
g(N) which reflects key empirical observations about population
growth.
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↪→ Realistically, based on observations, a given population will often initially grow
(or decline) quickly: dN

dt
≈ constant × N = rN for N “small”).

↪→ However, due to limited resources, disease, etc., the population levels off when
it reaches its carrying capacity K > 0, and stays at that level for awhile.

I Thus we want that if the population N < K then the population increases
towards N so dN

dt
> 0, AND if N > K then the population decreases towards K

so dN
dt
< 0.

I Can you think of a simple LINEAR expression for g(N) which has the required
property that for small N it causes the population to initially grow but for
N > K it causes the population to decline and for N = K it causes the
population to stay constant?

I For g , we essentially want a linear function of N which is positive for N < K , is
0 at N = K , and negative for N > K . Hence we want a decreasing linear
function of N.

↪→ If we make the logical assumption that if N = 0 then the value of g(N) should
be at its largest - which we will denote r(> 0), then the problem of finding
g(N) becomes one of finding the equation of a line which passes through the
points (0, r) and (K , 0). That line is determined as follows:

� The line has gradient − r
K

so that g(N) = − r
K
N + C for some constant C . To

determine C we use either of the points (0, r) or (K , 0) in the equation for
g(N). For example, using (0, r), we get g(0) = r ⇒ C = r so

g(N) = −
rN

K
+ r = r

(
1−

N

K

)
.
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Here is a plot of this population growth rate g(N) versus population N for the case
(without loss of generality) of r = 0.1 and K = 40, showing that the population
growth rate g(N) is positive for N < 40 but negative for N > 40.
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DEFINITION The Logistic model is called compensatory since its

net per capita growth rate g(N) is a MONOTONICALLY DECREASING

function of N. A depensatory model is one in which g(N) is an

INCREASING function of N over SOME range of N values.
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↪→ With this choice of g(N) = r

(
1− N

K

)
we get a DE which more

accurately reflects realistic population trends, called the Logistic
(or Verhulst) differential equation

dN

dt
= rN

(
1−

N

K

)
whose solution is said to represent LOGISTIC GROWTH.

↪→ DEFINITION In this Logistic DE
dN

dt
= g(N)N = r

(
1− N

K

)
N, the

right hand side of the differential equation, f (N) = rN

(
1−

N

K

)
,

is called the net growth rate of the population of size N

and g(N) = r

(
1−

N

K

)
is called the net per capita growth

rate of the population. MAKE SURE YOU KNOW WHY (for
example, use dimensional analysis).
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↪→ The Logistic (or Verhulst) differential equation

dN

dt
= rN

(
1−

N

K

)
is a

first order, nonlinear, separable

differential equation. See Tutorial 3 for
how to solve it.

• NOTE we can figure out several things about the general behaviour of solutions
to the Logistic ODE just by looking at the ODE

dN

dt
= rN

(
1−

N

K

)
= f (N)

I Equilibrium Solutions:

These are clearly N(t) = 0 and N(t) = K .

df

dN
=

r

(
1−

N

K

)
−

rN

K
= r −

2rN

K
.

Thus f ′(0) = r and f ′(K) = −r

and so if r > 0,

N(t) = 0 is an

unstable
equilibrium solution and

N(t) = K is a

stable equilibrium solution (or vice versa
if r < 0).
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Below is a graph of f (N) versus N along with corresponding graphs of N(t) versus t
in the Logistic ODE for the case (without loss of generality) of r = 0.1 and K = 40.
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Equilibrium Solution

The fact that N(t) = 40 is a stable equilibrium point is obvious, and one can also
deduce that N(t) = 0 is unstable (although I have not plotted anything for N < 0
since it makes no physical sense for a population).
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↪→ So we see from the plot of f (N) versus N which informs the plots
of N(t) versus t that solutions to the Logistic differential equation

dN

dt
= rN

(
1− N

K

)
behave as follows:

I If the population starts out above zero but below the carrying capacity
K , then it increases towards the carrying capacity (but does not cross it)
as t →∞.

I If the population starts out above the carrying capacity K , it decreases

towards the carrying capacity (but does not cross it) as t →∞.

I The same conclusions could have been arrived at by looking at a
direction field plot for the Logistic DE which included the
equilibrium solutions.

↪→ DEFINITION r is called the intrinsic growth rate and

is the growth rate in the absence of any limiting

factors.
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The Logistic Model (and related models)
Aside 2 - Nondimensionalisation of Equations

I The general solution of the Logistic ODE is (see Tutorial 3)

N(t) =
K

1 + Ae−rt
,

where A is an arbitrary constant.

 If we take the initial condition N(0) = N0, then A =
K

N0

− 1 so

N(t) =
K

1 +
(

K
N0
− 1

)
e−rt

=
N0K

N0 + (K − N0)e−rt
=

N0Ke
rt

K − N0 + N0ert
(CHECK !)

↪→ More generally, if N(t0) = N0 then

N(t) =
K

1 +
(

K
N0
− 1

)
e−r(t−t0)

= · · · =
N0Ke

r(t−t0)

K − N0 + N0er(t−t0)
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I The Logistic model has been applied successfully to a variety of scenarios,
including modelling bacteria growth and animal (including human, fish, etc.)
population growth and decline. For example, see page 14 of Essential

Mathematical Biology by Nicholas Britton, or the discussion in Chapter 1 and
associated bibliography of Mathematical Biology: 1 An Introduction,

Third Edition by J.D. Murray or the 1981 paper Polynomial models of

biological growth by R. Lamberson and C. Biles, UMAP Journal, 2(2), 9–25.

I We will do an example which uses the following USA population data table (see
also Tutorial 3):

YEAR POPULATION YEAR POPULATION YEAR POPULATION
1790 3,929,214 1870 38,558,371 1950 151,325,798
1800 5,308,483 1880 50,189,209 1960 179,323,175
1810 7,239,881 1890 62,979,766 1970 203,211,926
1820 9,638,453 1900 76,212,168 1980 226,545,805
1830 12,866,020 1910 92,228,496 1990 248,709,873
1840 17,069,453 1920 106,021,537 2000 281,421,906
1850 23,191,876 1930 123,202,624 2010 308,745,538
1860 31,443,321 1940 132,164,569 2020 ???
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I EXAMPLE 2 Use the data from the USA population table in the years
1800, 1850, and 1900 to determine a Logistic growth population
model N(t) which is exact for those three years. Use this model to
predict the populations in 1940 and 1950 and comment on the
accuracy.

• HINT: Why are THREE years’ worth of data needed to correctly
determine an appropriate Logistic model?

Because the solution N(t) = K

1+
(

K
N0
−1

)
e−rt

has THREE parameters

which determine it uniquely: N0 the initial population, K the
carrying capacity, and r the intrinsic growth rate.

I ANSWER

Letting t = 0 coincide with the year 1800, we have
N(0) = N0 = 5, 308, 483 so that

N(t) =
K

1 +
(

K
5,308,483 − 1

)
e−rt

.
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I ANSWER continued

To find the other two parameters we use the fact that we
know the values of N(50) and N(100) to come up with two (nonlinear)
equations in two unknowns:

N(50) = 23, 191, 876 =
K

1 +
(

K
5,308,483

− 1
)
e−50r

=
5, 308, 483K

5, 308, 483 + (K − 5, 308, 483) e−50r
AND

N(100) = 76, 212, 168 =
K

1 +
(

K
5,308,483

− 1
)
e−100r

=
5, 308, 483K

5, 308, 483 + (K − 5, 308, 483) e−100r

� Solving this nonlinear system is tricky. One could use the in-built Matlab
function fsolve (see Tutorial 3) or the systems version of Newton’s Method,
for example. See Appendix B for this and note that this is important even if it
appears in an appendix.
Here is an approach which leads to two single-variable nonlinear equations:

N(50) = 23, 191, 876 =
5, 308, 483K

5, 308, 483 + (K − 5, 308, 483)e−50r
⇒

(23, 191, 876)(5, 308, 483)+23, 191, 876e−50rK−(23, 191, 876)(5, 308, 483)e−50r = 5, 308, 483K

⇒ K =
(23, 191, 876)(5, 308, 483)[1− e−50r ]

5, 308, 483− 23, 191, 876e−50r
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I ANSWER continued

Also

N(100) = 76, 212, 168 =
5, 308, 483K

5, 308, 483 + (K − 5, 308, 483)e−100r
⇒

(76, 212, 168)(5, 308, 483)+76, 212, 168e−100rK−(76, 212, 168)(5, 308, 483)e−100r = 5, 308, 483K

⇒ K =
(76, 212, 168)(5, 308, 483)[1− e−100r ]

5, 308, 483− 76, 212, 168e−100r

I So setting these two values of K equal we get an equation in terms of r only:

(76, 212, 168)(5, 308, 483)[1− e−100r ]

5, 308, 483− 76, 212, 168e−100r
=

(23, 191, 876)(5, 308, 483)[1− e−50r ]

5, 308, 483− 23, 191, 876e−50r

I This is difficult to solve by hand but an approximation technique such as the
Bisection method or Secant method leads to a solution of

r ≈ 0.0315482567314
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I ANSWER continued

We can now use this r value in either of the two earlier
equations for K (corresponding to N(50) or N(100)) to find K . For example,

K =
(76, 212, 168)(5, 308, 483)[1− e−100r ]

5, 308, 483− 76, 212, 168e−100r
=

(76, 212, 168)(5, 308, 483)[1− e−3.15482567314]

5, 308, 483− 76, 212, 168e−3.15482567314

⇒ K ≈ 188, 168, 898

I So

N(t) =
188, 168, 898

1 +
(

188,168,898
5,308,483

− 1
)
e−0.0315482567314t

.

and it is easy to check (for example, using a function handle in Matlab) that
N(0) = 5, 308, 483, N(50) = 23, 191, 876, and N(100) = 76, 212, 168  the
exact values.

I N(140) = 132, 898, 138 versus the real 1940 population of 132, 164, 569 for an
absolute error of only 733 569 and a relative error of 0.00555  AN
EXCELLENT ESTIMATE!

I N(150) = 144371704 versus the real 1950 population of 151, 325, 798 for an
absolute error of 6 954 093 and a relative error of 0.04595  not so good this
time!
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I The figure below shows how this particular Logistic model is quite good at
predicting the USA population from 1800 until about 1950, but not afterwards.
The model doesn’t properly capture the baby boom from the mid 1940’s to the
mid 1960’s.

1800 1850 1900 1950 2000
0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

Year

USA Population Versus Year

Exact
Logistic
Equilibrium

EXERCISE Do EXAMPLE 2 with the exponential growth model instead, using data
from the years 1800 and 1900 to calculate r .
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↪→ Note when we multiply out the right-hand-side of the Logistic DE
dN
dt = rN

(
1− N

K

)
we get

dN

dt
= rN − r

K
N2

which makes it “easier” to see that it can be interpreted as model
showing intraspecific competition.

I Since individuals within a species often compete for food, water, space, mates,
and other scarce resources, then in over-crowded conditions there might be an
increase in the net population mortality.

I This will particularly be the case if individuals encounter each other frequently.

I When written as it is above, the Logistic DE shows an exponential growth rate

rN (a growth rate proportional to the population) which is then adjusted down

by a mortality term which is proportional to the number of paired encounters

between individuals in the population.
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The Logistic Equation With Harvesting  Constant Harvesting

Following courtesy of Professor Kevin Parrott’s 2010 MATH1106 notes
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𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎  𝑖𝑓 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 (don′t confuse the 𝑎′s‼‼) 

results in  

𝑦0 =
𝑎 ± �𝑎2 − 4 𝑎𝐾𝐻

2𝑎
𝐾

 

helps to simplify so multiply top and bottom by 𝐾/𝑎 (turns into �𝐾
𝑎
�
2
 inside √)  

=
𝐾 ± 𝐾

𝑎 �𝑎
2 − 4 𝑎𝐾𝐻

2 =  
𝐾 ± �𝐾2 − 4𝐾

𝑎 𝐻

2 =  
𝐾 ± 𝐾�1 − 4𝐻

𝐾𝑎
2   

 

The population must be real so there will be no equilibrium points unless 

𝐾2 −
4𝐾
𝑎 𝐻 > 0   i. e.   𝐻 <

𝑎𝐾
4 = 𝐻𝑚𝑎𝑥 

This is interesting as it means that there is an upper limit 𝐻𝑚𝑎𝑥on the 
harvesting rate for this population (e.g. the catch rate for a fish population) 
without which there can be NO equilibrium population. The two roots of the 
quadratic can be written in terms of the fraction of the maximum catch rate 
𝛼 = 𝐻 𝐻𝑚𝑎𝑥⁄ < 1 

𝑦0 =
𝐾 ± 𝐾�1 − 4𝐻

𝐾𝑎
2 =

1
2𝐾�1 ± �1 − 𝐻/𝐻𝑚𝑎𝑥  � =

1
2𝐾�1 ± √1 − 𝛼 � 

PHEW! (but really all we did was solve a quadratic) 

Now to check for stability. The first step is the same as problem 6.1 since the 
constant harvesting rate 𝐻 drops out when differentiated so that  

𝑓′(𝑦) = 𝑎 −
2𝑎𝑦
𝐾  

Equilibrium point 1:   𝑦0 = 1
2
𝐾�1 + √1 − 𝛼 � 
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𝑓′(𝑦0) = 𝑎 −
2𝑎𝑦0
𝐾 = 𝑎 − 𝑎�1 + √1 − 𝛼 � = −𝑎√1 − 𝛼 < 0 

Equilibrium point 2:   𝑦0 = 1
2
𝐾�1 − √1 − 𝛼 � 

𝑓′(𝑦0) = 𝑎 −
2𝑎𝑦0
𝐾 = 𝑎 − 𝑎�1 − √1 − 𝛼 � = +𝑎√1 − 𝛼 > 0 

So the first point is unstable (population lower than the original equilibrium 
population 𝐾) and the second point is stable (population is even lower than 
the original equilibrium population 𝐾). Try 𝛼 = 0.5 and check the two 
equilibrium populations. 

 

4.3 Matlab tutorial  

Confirm the stability of the logistic equation with harvesting equilibrium points 
using Euler, AB2 and TS2. 

1. Download the Adams Bashforth script file and the logistic function 
2. The parameters are set in the script file so that 

𝑎 = 0.2/𝑦𝑒𝑎𝑟,𝐾 = 1000,𝐻 = 0. 

Note that the solution for 𝐻 ≠ 0 is not set up (it is not easy to find) so 
when you set 𝐻 = 10  in 5) and 6) the labelling of the graphs will not be 
correct – they will show the difference between harvesting and no 
harvesting(the legend states exact and AB2) 

3. How long does it take for the population to reach 𝑦 = 999 if the starting 
value is 𝑦(0) = 100.  

4. What happens if the starting value is  
a. 1000 
b. 1010 
c. 990 

5. Investigate what happens to the final population if 𝐻 = 10 and 
𝑦(0) = 100. Does this fit with the analysis in 4.2.1? 

6. Check the stability of the new equilibrium point (with harvesting) and 
compare with the stability analysis in 4.2.1 
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The Logistic Equation With Harvesting  Non-Constant Harvesting

I There are other more sophisticated fisheries models in
which the harvesting is more realistically non-constant but
the same issues about determining a sustainable level of
harvesting is considered.

I Interested students should read up on the Schaefer Model
which is covered in places such as

https://en.wikipedia.org/wiki/Gordon-Schaefer Model

32 / 56

https://en.wikipedia.org/wiki/Gordon-Schaefer_Model


Continuous (ODE) Models of Population Growth/Decline for Single Species
Preliminary Basic Single Species Population Models

Metapopulations
Appendix

The Exponential Growth (Malthusian) Model
The Logistic Model (and related models)
Aside 2 - Nondimensionalisation of Equations

Growth with a Critical Threshold - A Minor Modification of the Logistic Equation

↪→ If we modify the Logistic growth DE dN
dt

= rN
(

1− N
K

)
by putting a minus sign

in front of the right-hand-side and renaming K as T , we get the following
equation which looks very similar to the Logistic DE but whose solution
behaves very differently:

dN

dt
= −rN

(
1−

N

T

)
, r > 0.

↪→ NOTE the per capita growth rate g(N) = −r
(

1− N
T

)
is an increasing

function of N, hence this model is depensatory.

↪→ It’s easy to see that its equilibrium solutions are N = 0 and N = T .

I And if we let f (N) be the right-hand-side of this DE, then

f ′(N) = −r
(

1− N
T

)
+ rN

T
= −r + 2rN

T
, so f ′(0) = −r < 0⇒ N(t) = 0 is a

stable equilibrium point, and f ′(T ) = r > 0⇒ N(t) = T is an unstable
equilibrium point. This is illustrated in the following graphs (without loss of
generality r = 0.1 and T = 40).
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Direction Field for dN
dt

= −rN
(

1− N
T

)

0 10 20 30 40 50
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100
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t

N
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Below is a graph of f (N) versus N along with corresponding graphs of N(t) versus t

for the DE dN
dt

= −rN
(

1− N
T

)
for the case (without loss of generality) of r = 0.1

and T = 40.

0 10 20 30 40 50
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-0.5
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1
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N
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dN/dt = f(N)

0 5 10 15 20
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20

40

60

80

100

t

N
(t

)

Equilibrium Solution

The fact that N(t) = 40 is an unstable equilibrium point is obvious, and one can also
deduce that N(t) = 0 is stable (although I have not plotted anything for N < 0 since
it makes no physical sense for a population).
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I In practical terms, T is a threshold level below which no
growth occurs, and in fact a population dies out. Above
this level, the population takes off (unrealistically quickly for

“large” t).

I Some species show this population growth pattern such
as the now extinct passenger pigeon: if there are
“enough” of them they will thrive but if there are too few
the population dies out (’though there is a modification to this

model which more accurately captures the passenger pigeon plight).

I In the case of the passenger pigeon, it was heavily hunted
for food and sport over a period of years causing the
population to fall below the critical threshold level for
survival circa the 1880s and they died out in 1914.
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↪→ One could solve this DE in very much the same way as one solves the Logistic
DE (see Tutorial 3). However, one could also get the solution by replacing K
with T and r with −r in the solution to the Logistic DE. Thus, with initial
condition N(0) = N0 we get:

N(t) =
T

1 +
(

T
N0
− 1
)
ert
.

↪→ Note in this solution we observe something which we couldn’t easily tell from
the earlier analytical classification of the two equilibrium solutions (but which
might have been suggested by the direction field): If N0 > T so that
T
N0
− 1 < 0, then we can find a FINITE t value, t∗, for which the denominator

1 +
(

T
N0
− 1
)
ert = 0 and thus the solution N(t) is unbounded.

I To find t∗ we solve 1 +
(

T
N0
− 1
)
ert∗ = 0⇒ N0 + (T − N0)ert∗ = 0⇒

ert∗ = −
N0

T − N0
⇒ t∗ =

1

r
ln

(
N0

N0 − T

)
.

I NOTE this is a case in which the solution provided more detail than just the
geometrical analysis.
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I Critical thresholds or tipping points occur in
other instances such as:

I in laminar (smooth) flow of a fluid, a small disturbance
might have a critical amplitude above which the flow
becomes turbulent;

I in infectious disease control, there may be a critical
percentage of the population which, if vaccinated,
causes an infectious disease to die out;

I inside a computer’s central processing unit (CPU) there
may be fail-safe devices (automatic control devices)
designed to safely shut down the CPU if a critical
maximum temperature is reached.
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Two Other Famous Density-Dependent Intrinsic Growth Rate Models

↪→ Two other well-known g(N) for population models of the type dN

dt
= g(N)N

are:
1. The Gompertz law where g(N) is a negative logarithmic function of N - for

example, g(N) = r ln
(

K
N

)
where r ,K > 0, leading to the Gompertz equation,

dN

dt
= rN ln

(
K

N

)
I Like the Logistic DE this is compensatory but since ln(0) is not defined

this model is not valid for small populations.

I This is used to model self-limiting population growth, notably the growth

of tumours.
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2. The Allee effect (Warder Clyde Allee)
I g(N) in this case initially increases, reaches a peak at an intermediate

value of N, then decreases (see example graph below).
I This models populations in which the growth rate increases with the

population - at least, until a certain point where the population density
becomes too high and the population declines. It is the increase of
population growth rate with increasing population specifically which is
called the Allee effect.

I This Allee effect is typically due to cooperation within the individuals in

the population - for example, fighting off predators or collecting food

(the more individuals there are to do these, the greater the success of the

group in doing them).
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Aside 2 - Non-dimensionalisation (and Scaling) of Equations

� There are several very good reasons to (re)write and study the differential

equations we derive in these models so that they involve dimensionless

quantities. Some of the benefits are:
I It can help to ensure that both sides of the equation are dimensionally

consistent.
I Units of measurement are no longer important and it is “easier” to

compare the relative sizes of quantities in the model - “large” and
“small” take on a clearer meaning.

I It typically uncovers key dimensionless quantities that govern the

dynamics and in the process reduces the number of parameters in the

equation.

↪→ You can read a good article on this, Simplification and Scaling written by Lee
A. Segel in SIAM Review, vol. 14, no. 4, pp 547--571 (1972).

I There is no unique way to do this but with some practice and thought it
becomes easier to decide what an appropriate non-dimensionalisation/scaling of
a model might be. For some models, the approach typically used is established
and standard.
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Non-dimensionalisation of the Logistic DE

� For the Logistic DE,
dN

dt
= rN

(
1−

N

K

)
we observe the presence of the

dimensionless (WHY?) ratio N
K

which suggests that we divide both sides of the
equation by K (ASIDE: dividing by N0 would also have been a possibility):

1

K

dN

dt
= r

N

K

(
1−

N

K

)
⇒

d

dt

(
N

K

)
= r

N

K

(
1−

N

K

)
.

I This form of the equation reveals that N(t) really only appears in the
dimensionless ratio N

K
, so we can define a new dimensionless variable

y(t) =
N(t)

K

which is the population as a multiple (or fraction) of the carrying capacity, K .

� Thus taking this and substituting N(t) = Ky(t) into the original Logistic DE
we get

dy

dt
= ry(1− y)
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REMINDER dN
dt

= rN
(

1− N
K

)
with substitution y(t) =

N(t)
K

becomes dy
dt

= ry(1− y).

� This is good but the equation is still not completely dimensionless ... it has
dimension

1/T - essentially we haven’t really non-dimensionalised the
independent variable, t (time)

.
I Thus we would like to scale both sides of the equation by a quantity with

dimension

T

to arrive at a truly dimensionless DE.
I One way is to introduce a dimensionless variable related to time: one may ask

what variable(s) in the current equation can we multiply or divide t by to get a
dimensionless variable. The “obvious” choice is to multiply by r so we get the
dimensionless τ = rt so that t = τ

r
and y(t) = y

(
τ
r

)
thus by the chain rule

dy

dt
=

dy

dτ

dτ

dt
=

dy

dτ
r and modified Logsitic DE becomes

dy

dτ
r = ry(1− y) ⇒

dy

dτ
= y(1− y).

I Thus this form of the Logistic equation is dimensionless and has only ONE (or
TWO) parameter(s), y (and τ ) as opposed to the original equation which had
THREE (or FOUR), N, r , K , (and t).

� NOTE if we solve the dimensionless form of the Logistic DE dy
dτ

= y(1− y) for
y(τ) then we can recover the solution in terms of the original dependent
variable N(t) by observing that N(t) = Ky(τ(t)) = Ky(rt) (CHECK!)
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A general rough guide to nondimensionalisation of an equation:

I Identify the dependent and independent variables.

I Where possible replace each variable by a quantity scaled
relative to some base unit of measurement.

I Rewrite the equation with these scaled/dimensionless
variables.

 NOTE in Lecture 5 we outline a more systematic
approach to non-dimensionalisation of equations.
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Metapopulations

(largely taken from Essential Mathematical Biology by Nicholas Britton)

I This isn’t really different from the Logistic model - it’s just that the approach
and scenario are sufficiently different to merit (in my opinion) covering it. Also,
we may use this approach later with interacting species.

I This allows us to incorporate a spatial element (implicitly) into our modelling of
population dynamics, while still using ordinary differential equations.

I DEFINITION A metapopulation is a group of spatially separated

populations of the same species which interact in some way - i.e.

there is some movement of individuals from one population to

another. Think for example of different populations of a given species of plant
or animal (which can swim a bit or otherwise cross a body of water) living on a
large group of nearby islands (archipelago).

I Was used by Richard Levins (inventor of the word “metapopulation”) in 1969
to model population changes of insect pests in fields.

I BASIC ASSUMPTIONS In the metapopulations approach, we assume the set
of potentially habitable sites (or patches) is large, the sites are identical, and
they are all isolated from each other in the same way.

I We will look at the basic original model by Levins where the measure of
population is simplified to the point that each habitable patch is considered at
any point in time to be either occupied or unoccupied/vacant.
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↪→ Studies of patchy environments such as those assumed in the metapopulation
model have shown that the overall species often manage to survive even
through cycles of local extinctions and recolonisations in the different habitable
patches. So if the population on a site becomes extinct there is a chance it
could be recolonised by members of the species from other sites.

→ Assume a large set of K potentially habitable sites and let p(t) be the fraction
of sites occupied at time t (so 1− p(t) is the fraction of unoccupied sites at
time t).

I Let eδt be the probability that an occupied site becomes unoccupied in the
next time interval δt. Thus e is a (local) rate of extinction (a mean rate of
extinction for each occupied patch)  do a dimensional analysis of the
dimensionless number eδt to see this. This means that the mean fraction of
sites which become unoccupied in the next time interval δt is

ep(t)δt

.

I Let c be a constant rate of colonisation from each of the p(t) fraction of
occupied patches (a mean rate of colonisation from each occupied patch).
Then during the next time interval δt, the probability that an unoccupied site
becomes occupied is

cp(t)δt

. This means that the mean fraction of sites which
become newly occupied in the next time interval δt is

cp(t)δt(1− p(t))

 ASIDE: c above is often referred to as the rate of propagule generation from
each of the p(t) fraction of occupied sites. Propagule is a general term for any
material used to propagate an organism - which may itself be different from the
parent organism, such as the seeds or spores of plants.
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I Thus the net change in the fraction of sites occupied in the time interval from t
to t + δt is p(t + δt)− p(t) =

mean fraction of sites which become occupied −mean fraction of sites which become unoccupied .

So p(t+δt)−p(t) = cp(t)δt(1−p(t))−ep(t)δt = (cp(t)(1−p(t))−ep(t))δt ⇒

p(t + δt)− p(t)

δt
= cp(t)(1− p(t))− ep(t)

and taking the limit as δt → 0 we get the basic Levins ODE model for
metapopulations:

dp

dt
= cp(t)(1− p(t))− ep(t).

→ Note in this model, extinction of the population from a given occupied site is
assumed to be independent of the number of other sites occupied, BUT
colonisation of a given vacant site is a linear function of the number/fraction of
sites available to provide colonists.

→ This equation is just a Logistic DE in disguise. I will for now leave it as an

exercise for you to rewrite it in the form
dp

dt
= rp

(
1−

p

K

)
for appropriate r

and K .
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Reminder: dp
dt

= cp(t)(1− p(t))− ep(t).

I The critical parameter in the metapopulation ODE is the basic reproduction

ratio, R0 =
c

e
, which represents the number of sites an occupied site can

expect to colonise before becoming extinct.
I Clearly there is a threshold when R0 = 1. If R0 > 1 and p(0) > 0 it can be

shown that there is a stable equilibrium at p(t) = 1−
1

R0
= 1−

e

c
and

therefore the population always persists and never dies out over the entire set of
sites. If R0 < 1, it can be shown that p(t)→ 0 as t →∞ so that the
population eventually becomes extinct over the entire set of sites. Thus the
dispersal/colonisation must be sufficiently large (R0 > 1⇒ c > e) for the
population to survive.

I A slight variation on this ODE can show the effect of habitat destruction on the
survival chances of the species. Removal of a fraction D of the habitat leads to
the modified equation

dp

dt
= cp(t)(1−D − p(t))− ep(t)

which contains the assumption that any attempted colonisation of a removed
patch is unsuccessful and leads to the destruction of the propagules.
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Reminder: dp
dt

= cp(t)(1− D − p(t))− ep(t).

I The basic reproduction ratio is changed now from R0 =
c

e
to R′0 =

c(1− D)

e
since only the fraction 1− D of the colonisations (assuming no habitat
destruction) are now succesful.

I This means that the critical threshold is now

R′0 = 1 or equivalently
( c
e

)
= R0 =

1

1− D
.

Rearranging this equation to solve for D, we see that the critical threshold is
reached when

D = 1−
1

R0

so extinction occurs when D is above this level.
I NOTE this critical value of D is the same as the steady state solution to the

original metapopulation equation (when D = 0).
I Thus extinction occurs if only a fraction (depending on e and c) of the

habitable sites are destroyed. An equivalent observation in epidemiology (“the
study of the distribution and determinants of health-related states or events
(including disease), and the application of this study to the control of diseases
and other health problems”) is that one need only vaccinate a certain critical
fraction of the susceptible population to eradicate a disease.
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HOMEWORK:

I Review finding eigenvalues and eigenvectors of
square matrices. For example, see the
Supplementary Lecture on Eigenvalues and
Eigenvectors and Matrix/Vector Functions of a
Single Variable under the Lecture 4 Section of
the class Moodle page.
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APPENDIX A - Constructing Mathematical Models

From section 1.1 of Elementary Differential Equations by Boyce and DiPrima
(Wiley), modified. The following steps are often involved in the modelling process:

1. Identify the dependent and independent variables and assign letters to represent
them. In ODE models, the independent variable is often time.

2. Choose appropriate units of measurement for each variable. For example,
depending on what you are modelling it might make more sense to measure
time in seconds or years.

3. State the basic principle(s) which underlie(s) or govern(s) the problem you are
investigating. This might be a widely-recognised physical law, such as Newton’s
law of motion, or a more speculative assumption based on observations. This
step will typically require that you have some familiarity with the field in which
the problem lies.

4. Express the principle or law in step 3 in terms of the variables you chose in step
1. This is typically where you obtain your differential (or other) equation(s)
whose solution(s) are what you seek - the mathematical model of the problem.
Note this may involve the use of physical constants or parameters and the
choice of appropriate values for them, or it may involve the use of
auxiliary/intermediate variables that must then be related to the primary
variables.

5. Do a dimensional analysis of your equation(s) to ensure that both sides have
the same unit(s) of measurement.
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APPENDIX B - Newton’s Method for Solving Systems of Nonlinear Equations

� The single variable Newton’s method for solving a nonlinear equation f (x) = 0,

xk+1 = xk − f (xk )
f ′(xk )

= xk − [f ′(xk)]−1 f (xk) can be easily generalised to

solve a nonlinear SYSTEM of n equations ~F (~x) = 0, where ~F is an
n−dimensional vector field.

I First recall that if
~F (~x) = [f1(x1, x2, . . . , xn), f2(x1, x2, . . . , xn), . . . , fn(x1, x2, . . . , xn)]T is an

n−dimensional vector field (~F : Rn 7→ Rn), then the Jacobian matrix of ~F is

denoted ~F ′(~x) and is the n × n matrix given by:

~F ′(~x) =



∂f1
x1

∂f1
x2

∂f1
x3

. . . . . . ∂f1
xn

∂f2
x1

∂f2
x2

∂f2
x3

. . . . . . ∂f2
xn

∂f3
x1

∂f3
x2

∂f3
x3

. . . . . . ∂f3
xn

...
...

...
...

...
...

...
...

...
...

...
...

∂fn
x1

∂fn
x2

∂fn
x3

. . . . . . ∂fn
xn


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I Then to solve the nonlinear system of equations ~F (~x) = ~0, where
~x = [x1, x2, . . . , xn]T ,
~F (~x) = [f1(x1, x2, . . . , xn), f2(x1, x2, . . . , xn), . . . , fn(x1, x2, . . . , xn)]T is a

vector field (~F : Rn 7→ Rn), and ~0 is the n × 1 zero vector, we could use the
systems version of Newton’s method which resembles the scalar version:

~x(k+1) = ~x(k)−[~F ′(~x(k))]−1 ~F (~x(k)).

where ~F ′(~x) is the n × n Jacobian matrix: with
∂fi (~x)

∂xj
being the i − jth entry

of that matrix. NOTE I’m using bracketed superscripts to indicate the iteration
number in Newton’s method.

 In practical terms, the systems version of Newton’s method can also be written
as

~x(k+1) = ~x(k)+~δ(k)

where ~δ(k) is the solution to the linear system

~F ′(~x(k))~δ(k) = −~F (~x(k)).

I A typical stopping criterion for this method is to stop when
‖~x(k+1) − ~x(k)‖ = ‖~δ(k)‖ < ε for the first time, for some ε > 0.
NOTE Matlab has an in-built norm() function for finding the norms of vectors.
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↪→ Example (from Burden and Faires book) for the following nonlinear system,

identify ~F and the Jacobian matrix J:

3x1 − cos(x2x3) =
1

2

x2
1 − 81(x2 + 0.1)2 + sin x3 = −1.06

e−x1x2 + 20x3 =
3− 10π

3
.

~F (x1, x2, x3) =

 3x1 − cos(x2x3)− 1
2

x2
1 − 81(x2 + 0.1)2 + sin x3 + 1.06

e−x1x2 + 20x3 + 10π−3
3

 and

J(x1, x2, x3) =

 3 x3 sin(x2x3) x2 sin(x2x3)
2x1 −162(x2 + 0.1) cos x3

−x2e−x1x2 −x1e−x1x2 20



↪→ Solving this system with my program sysNewton.m, with ~x0 = (0.1, 0.1,−0.1)T

and requiring that ‖~x(k+1) − ~x(k)‖2 < 10−12, the method converges to the
following solution after six iterations:

~x = [0.5, 4.64018203058451× 10−18, −0.523598775598299]T
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↪→ See the class Moodle page under Lecture 3 for
sysNewton.m.

I NOTE when using sysNewton.m for the system in
EXAMPLE 2 one has to start quite close to the solution
for Newton’s method to converge.

I For example, using K = 200 000 000 and r = 0.1, after 8
iterations the method converges to (with a tolerance for
the norm of the difference of successive iterates set at
10−6)

K = 188 168 898 AND r = 0.0315482567314005

as expected.
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APPENDIX C - Key Terminology

Alot of what we have looked at in this lecture is
essentially mathematical ecology.

I Ecology : A branch of biology which studies the
interrelationship between different species and
their environment/physical surrounding.
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