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Òæ We now turn our attention to systems of di�erential equations.
These are needed for modelling of more complex systems, such as
the population dynamics of interacting species (predator-prey,
host-parasite, etc) or the concentration of reactants in reaction
kinetics or communication within the nervous system, etc.

Òæ As for single ODEs, we will use three approaches to studying
systems of ODEs:

I Analytical (finding exact solutions).
I Numerical (approximating solutions to initial value problems).
I Geometrical (determining solution trends without solving the equations).

Òæ We will then turn our focus to deriving models which involve
systems of ODEs and will use some combination of the three
approaches/tools above to look at solutions to such systems.

Òæ I want you to acquire a good understanding of the three approaches
but also don’t focus exclusively on them; learn to regard them as
tools to help you with exploring solutions to the systems of ODEs
which arise in your models.
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Òæ As with single ODEs, probably the newest thing to most of you will
be the geometrical approach and that is likely what we will spend
most of our time on.

Òæ The analytical approach - in which you learn to solve linear,
constant coe�cient systems of ODEs using techniques and
concepts from linear algebra (notably eigenvalues and eigenvectors)
- will be useful also for the insight it gives to the later geometrical
approach. The truth is, however, with many of the models we study
it will be very di�cult or impossible to find exact solutions.

Òæ For specific models, with initial conditions, often the numerical
approach will be invaluable.
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Advice On Navigating This Massive (almost 150 pages) Lecture

Òæ Anyone planning on doing postgraduate studies, particularly in
any field related to Applied Mathematics, should try to become
familiar with all of this material, including the supplementary
reading. Having a good understanding of ODEs and the related
theory is important for many areas of application, for understanding
some aspects of PDEs, as well as in the study of other areas of
Mathematics such as Dynamical Systems, Di�erential Geometry,
and Lie Groups.

Òæ Otherwise, the main things to try to understand are: how to solve
constant coe�cient homogeneous systems of linear ODEs, how to
convert higher order ODEs to systems of first order ODEs, how to
solve IVPs numerically using something like MATLAB’s ode45(),
and how to classify steady states of linear and nonlinear systems of
ODEs (including some intuitive idea of what those steady states
look like geometrically and how to interpret them in a real-world
application).
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End of Section
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Finding Eigenvalues and Eigenvectors Using Matlab
CASE 1: Solving x̨ Õ = Ax̨ , An◊n with n di�erent eigenvalues
CASE 2: Solving x̨ Õ = Ax̨ , An◊n with complex eigenvalues
CASE 3: Solving x̨ Õ = Ax̨ , An◊n with repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

I Much of what we will do next will be similar to what one
does to solve linear, constant coe�cient ODEs: - for
example, the linear second order constant coe�cient ODE

ad2x
dt2 + b dx

dt + cx = Q(t)

(especially the simple case when Q(t) = 0 - A
HOMOGENEOUS ODE).

I We will also be using many of the ideas from the
Supplementary Lecture on Eigenvalues/Eigenvectors.
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Definitions and Conventions

DEFINITIONS : A general system of n first order linear differential
equations is one which can be written in the form

x Õ
1(t) = p11(t)x1(t) + p12(t)x2(t) + . . . + p1n(t)xn(t) + g1(t)

x Õ
2(t) = p21(t)x1(t) + p22(t)x2(t) + . . . + p2n(t)xn(t) + g2(t)

... =
...

x Õ
n(t) = pn1(t)x1(t) + pn2(t)x2(t) + . . . + pnn(t)xn(t) + gn(t)

or, in matrix form, x̨ Õ(t) = P(t )̨x(t) + g̨(t), where x̨(t) =

S

WU

x1(t)
x2(t)

...
xn(t)

T

XV,

P(t) =

S

WU

p11 p12 . . . p1n
p21 p22 . . . p2n
...

...
...

...
pn1 pn2 . . . pnn

T

XV, and g̨(t) =

S

WU

g1(t)
g2(t)

...
gn(t)

T

XV.
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Finding Eigenvalues and Eigenvectors Using Matlab
CASE 1: Solving x̨ Õ = Ax̨ , An◊n with n di�erent eigenvalues
CASE 2: Solving x̨ Õ = Ax̨ , An◊n with complex eigenvalues
CASE 3: Solving x̨ Õ = Ax̨ , An◊n with repeated eigenvalues

Òæ EXAMPLE 1 For example,

e2t x Õ(t) + sin2(t)x(t) + 3y(t) = 10 cos t
y Õ(t) + x(t) ≠ ln(t2 + 1)y(t) = t3 ≠ 4t2

is a linear ODE system of equations since it can be rewritten as

x Õ(t) = ≠
sin2 t
e2t x(t) ≠

3
e2t y(t) + 10 cos t

e2t

y Õ(t) = ≠x(t) + ln(t2 + 1)y(t) + t3 ≠ 4t2

or, in matrix form,

d
dt

Ë
x(t)
y(t)

È
=

5
≠ sin2 t

e2t ≠ 3
e2t

≠1 ln(t2 + 1)

6 Ë
x(t)
y(t)

È
+

5
10 cos t

e2t
t3 ≠ 4t2

6

ø x̨ Õ(t) ø P(t) ø x̨(t) ø g̨(t)
Òæ If g̨(t) = 0̨ in x̨ Õ(t) = P(t)x̨(t) + g̨(t) then the linear system is said to be

HOMOGENEOUS.
So the linear system in EXAMPLE 1 above is NOT homogeneous, but

d
dt

Ë
x(t)
y(t)

È
=

5
≠ sin2 t

e2t ≠ 3
e2t

≠1 ln(t2 + 1)

6 Ë
x(t)
y(t)

È
IS HOMOGENEOUS.
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y Õ(t) + x(t) ≠ ln(t2 + 1)y(t) = t3 ≠ 4t2

is a linear ODE system of equations since it can be rewritten as

x Õ(t) = ≠
sin2 t
e2t x(t) ≠

3
e2t y(t) + 10 cos t

e2t

y Õ(t) = ≠x(t) + ln(t2 + 1)y(t) + t3 ≠ 4t2

or, in matrix form,

d
dt

Ë
x(t)
y(t)

È
=

5
≠ sin2 t

e2t ≠ 3
e2t

≠1 ln(t2 + 1)

6 Ë
x(t)
y(t)

È
+

5
10 cos t

e2t
t3 ≠ 4t2

6

ø x̨ Õ(t) ø P(t) ø x̨(t) ø g̨(t)
Òæ If g̨(t) = 0̨ in x̨ Õ(t) = P(t)x̨(t) + g̨(t) then the linear system is said to be

HOMOGENEOUS.

So the linear system in EXAMPLE 1 above is NOT homogeneous, but

d
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=

5
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≠1 ln(t2 + 1)

6 Ë
x(t)
y(t)

È
IS HOMOGENEOUS.
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Òæ So a homogeneous linear system of ordinary di�erential equations
can always be written in matrix form as x̨ Õ(t) = P(t )̨x(t).

Òæ EXAMPLE 2 Is the following system of ODEs linear, and if so is it
homogeneous?

3 dx
dt

+ 3 dy
dt

≠ 2x = et

dx
dt

+ 2 dy
dt

≠ y = 1

or, in matrix form,
Ë

3 3
1 2

È d
dt

1
x
y

2
+

Ë
≠2 0

0 ≠1

È 1
x
y

2
=

1
et

1

2
.

I ANSWER It is linear but not homogeneous. ... To see that it is
linear, just multiply both sides of the equation on the left byË

3 3
1 2

È≠1
=

Ë
2/3 ≠1

≠1/3 1

È
to get

d
dt

Ë
x
y

È
+

Ë
≠4/3 1

2/3 ≠1

È Ë
x
y

È
=

5
2
3 et ≠ 1

≠ 1
3 et + 1

6
∆

d
dt

Ë
x
y

È
=

Ë
4/3 ≠1

≠2/3 1

È Ë
x
y

È
+

5
2
3 et ≠ 1

≠ 1
3 et + 1

6
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CASE 1: Solving x̨ Õ = Ax̨ , An◊n with n di�erent eigenvalues
CASE 2: Solving x̨ Õ = Ax̨ , An◊n with complex eigenvalues
CASE 3: Solving x̨ Õ = Ax̨ , An◊n with repeated eigenvalues

Òæ Similar to the case with nth order linear ODEs in the Calculus
course in year 1, we will mostly restrict ourselves to the simpler case
in which the COEFFICIENT MATRIX, P(t), in the homogeneous
system x̨ Õ(t) = P(t)x̨(t), is a CONSTANT matrix.

So we focus on
solving

x̨ Õ(t) = Ax̨(t), where An◊n is a constant matrix.

Òæ EXAMPLE 1 does not have a constant coe�cient matrix, but the
following does:

d
dt

Q

a
x(t)
y(t)
z(t)

R

b =

Q

a
≠3 0 17
≠4 1 2

2 2 ≠25

R

b

Q

a
x(t)
y(t)
z(t)

R

b

(as does the “simplified” form of the system in EXAMPLE 2, even
though it is not homogeneous).
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Converting nth order Linear ODEs to Linear Systems of First Order ODEs

º We focus on first order systems of ODEs because, essentially, all other (systems
of) ODEs can be converted to a first order system of ODEs.

Òæ There is a simple way of transforming an nth order single ODE into a system of
n first order ODEs. This is probably best demonstrated by an example:

Òæ EXAMPLE 3 Transform uiv ≠ 17uÕÕÕ + tuÕÕ + (cos t)uÕ ≠ 23u = 0 into a
system of four first order ODEs.

Òæ ANSWER Let

y1(t) = u(t); y2(t) = uÕ(t); y3(t) = uÕÕ(t); y4(t) = uÕÕÕ(t) (1)

We then automatically have that

y Õ
1 = y2

y Õ
2 = y3

y Õ
3 = y4

y Õ
4 = uiv = 23u ≠ (cos t)uÕ ≠ tuÕÕ + 17uÕÕÕ

∆ y Õ
4 = 23y1 ≠ (cos t)y2 ≠ ty3 + 17y4

 We can now solve for y1, y2, y3, and y4 and use Equations (1) to convert back
to a solution in terms of u(t).
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REMINDER : yÕ
1 = y2; yÕ

2 = y3;

yÕ
3 = y4; yÕ

4 = 23y1 ≠ (cos t)y2 ≠ ty3 + 17y4

Òæ And the matrix form of this system is y̨ Õ(t) = P(t)y̨ , or equivalently

d
dt

S

U
y1
y2
y3
y4

T

V =

S

U
0 1 0 0
0 0 1 0
0 0 0 1

23 ≠ cos t ≠t 17

T

V

S

U
y1
y2
y3
y4

T

V

In general, to convert the nth order ODE y(n) = F(t, y, y Õ, . . . , y(n≠1)) into a system
of n first order ODEs

Let x1 = y , x2 = y Õ, . . . , xn = y (n≠1). THEN

y (n) = F (t, y , y Õ, . . . , y (n≠1)) is equivalent to y (n) = F (t, x1, x2, . . . , xn), and

x Õ
1 = x2

...
...

...
x Õ

n≠1 = xn

x Õ
n = F (t, x1, x2, . . . , xn).
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Finding Eigenvalues and Eigenvectors Using Matlab
CASE 1: Solving x̨ Õ = Ax̨ , An◊n with n di�erent eigenvalues
CASE 2: Solving x̨ Õ = Ax̨ , An◊n with complex eigenvalues
CASE 3: Solving x̨ Õ = Ax̨ , An◊n with repeated eigenvalues

Òæ EXAMPLE 4 Transform (a) y ÕÕ + 0.5y Õ + 2y = 3 cos t and (b)
w ÕÕÕ ≠ 3w = 0 into systems of first order equations.

Òæ ANSWER (a) Let x1 = y , x2 = y Õ ∆

x Õ
1 = x2

x Õ
2 = ≠ 2x1 ≠ 0.5x2 + 3 cos t.

In matrix form, this is d
dt

Ë
x1
x2

È
=

Ë
0 1

≠2 ≠0.5

È Ë
x1
x2

È
+

Ë
0

3 cos t

È

(b) Let x1 = w , x2 = w Õ, x3 = w ÕÕ ∆

x Õ
1 = x2

x Õ
2 = x3

x Õ
3 = 3x1.

In matrix form, this is

C
x1
x2
x3

DÕ

(t) =

C
0 1 0
0 0 1
3 0 0

D C
x1
x2
x3

D

I ASIDE - if that last problem had initial conditions, e.g., w(t0) = a, w Õ(t0) = b,

and w ÕÕ(t0) = c, they would become

A
x1(t0)
x2(t0)
x3(t0)

B
=

A
a
b
c

B
.
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Some General Theory of Linear Systems of First Order ODEs

˙̨x(t) = P(t)x̨(t) + g̨(t)
Òæ As with nth order linear single ODEs, we can find a general solution to the

inhomogeneous system of n first order linear ODEs ˙̨x(t) = P(t)x̨(t) + g̨(t) by
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Òæ NOTE as for homogeneous linear ODEs, the principle of superposition applies
to systems of first order linear ODEs:

If the vector functions x̨1(t) and x̨2(t) are
solutions to x̨ Õ = P(t )̨x, then so is the linear combination c1x̨1 + c2x̨2 for any
constants c1 and c2.
(An equivalent pair of statements is that if x1 and x2 are solutions to
x̨ Õ = P(t)x̨ and c1 is any constant, then BOTH 1 x1 + x2 AND 2 c1x1 are
also solutions to x̨ Õ = P(t)x̨ ).

‘æ EXERCISE: Prove this statement.
Òæ By applying the principle of superposition repeatedly, we see that if

x̨1(t), x̨2(t), . . ., x̨k(t) is any finite set of solutions to the homogeneous
system x̨ Õ = P(t)x̨ , then so is any finite linear combination of those solutions,
c1x̨1(t) + c2x̨2(t) + . . . + ck x̨k(t) .

‘æ It can be shown that for a general solution of n linear homogeneous ODEs
x̨ Õ = P(t)x̨ on an interval – < t < —, we need exactly n LINEARLY
INDEPENDENT solution vector functions x̨1(t), x̨2(t), . . . , x̨n(t) on that same
interval – < t < —. In that case, the general solution of x̨ Õ = P(t)x̨ is

x̨(t) = c1x̨1(t) + c2x̨2(t) + . . . + cnx̨n(t).

16 / 131



Introduction
Analytical Solutions to Systems of First Order ODEs
Numerical Methods for Systems of First Order ODEs

Geometrical Study of Solutions to Systems of First Order ODEs
Appendix

Finding Eigenvalues and Eigenvectors Using Matlab
CASE 1: Solving x̨ Õ = Ax̨ , An◊n with n di�erent eigenvalues
CASE 2: Solving x̨ Õ = Ax̨ , An◊n with complex eigenvalues
CASE 3: Solving x̨ Õ = Ax̨ , An◊n with repeated eigenvalues

Òæ NOTE as for homogeneous linear ODEs, the principle of superposition applies
to systems of first order linear ODEs: If the vector functions x̨1(t) and x̨2(t) are
solutions to x̨ Õ = P(t )̨x, then so is the linear combination c1x̨1 + c2x̨2 for any
constants c1 and c2.

(An equivalent pair of statements is that if x1 and x2 are solutions to
x̨ Õ = P(t)x̨ and c1 is any constant, then BOTH 1 x1 + x2 AND 2 c1x1 are
also solutions to x̨ Õ = P(t)x̨ ).

‘æ EXERCISE: Prove this statement.
Òæ By applying the principle of superposition repeatedly, we see that if

x̨1(t), x̨2(t), . . ., x̨k(t) is any finite set of solutions to the homogeneous
system x̨ Õ = P(t)x̨ , then so is any finite linear combination of those solutions,
c1x̨1(t) + c2x̨2(t) + . . . + ck x̨k(t) .

‘æ It can be shown that for a general solution of n linear homogeneous ODEs
x̨ Õ = P(t)x̨ on an interval – < t < —, we need exactly n LINEARLY
INDEPENDENT solution vector functions x̨1(t), x̨2(t), . . . , x̨n(t) on that same
interval – < t < —. In that case, the general solution of x̨ Õ = P(t)x̨ is

x̨(t) = c1x̨1(t) + c2x̨2(t) + . . . + cnx̨n(t).

16 / 131



Introduction
Analytical Solutions to Systems of First Order ODEs
Numerical Methods for Systems of First Order ODEs

Geometrical Study of Solutions to Systems of First Order ODEs
Appendix

Finding Eigenvalues and Eigenvectors Using Matlab
CASE 1: Solving x̨ Õ = Ax̨ , An◊n with n di�erent eigenvalues
CASE 2: Solving x̨ Õ = Ax̨ , An◊n with complex eigenvalues
CASE 3: Solving x̨ Õ = Ax̨ , An◊n with repeated eigenvalues

Òæ NOTE as for homogeneous linear ODEs, the principle of superposition applies
to systems of first order linear ODEs: If the vector functions x̨1(t) and x̨2(t) are
solutions to x̨ Õ = P(t )̨x, then so is the linear combination c1x̨1 + c2x̨2 for any
constants c1 and c2.
(An equivalent pair of statements is that if x1 and x2 are solutions to
x̨ Õ = P(t)x̨ and c1 is any constant, then BOTH 1 x1 + x2 AND 2 c1x1 are
also solutions to x̨ Õ = P(t)x̨ ).

‘æ EXERCISE: Prove this statement.
Òæ By applying the principle of superposition repeatedly, we see that if

x̨1(t), x̨2(t), . . ., x̨k(t) is any finite set of solutions to the homogeneous
system x̨ Õ = P(t)x̨ , then so is any finite linear combination of those solutions,
c1x̨1(t) + c2x̨2(t) + . . . + ck x̨k(t) .

‘æ It can be shown that for a general solution of n linear homogeneous ODEs
x̨ Õ = P(t)x̨ on an interval – < t < —, we need exactly n LINEARLY
INDEPENDENT solution vector functions x̨1(t), x̨2(t), . . . , x̨n(t) on that same
interval – < t < —. In that case, the general solution of x̨ Õ = P(t)x̨ is

x̨(t) = c1x̨1(t) + c2x̨2(t) + . . . + cnx̨n(t).

16 / 131



Introduction
Analytical Solutions to Systems of First Order ODEs
Numerical Methods for Systems of First Order ODEs

Geometrical Study of Solutions to Systems of First Order ODEs
Appendix

Finding Eigenvalues and Eigenvectors Using Matlab
CASE 1: Solving x̨ Õ = Ax̨ , An◊n with n di�erent eigenvalues
CASE 2: Solving x̨ Õ = Ax̨ , An◊n with complex eigenvalues
CASE 3: Solving x̨ Õ = Ax̨ , An◊n with repeated eigenvalues

Òæ NOTE as for homogeneous linear ODEs, the principle of superposition applies
to systems of first order linear ODEs: If the vector functions x̨1(t) and x̨2(t) are
solutions to x̨ Õ = P(t )̨x, then so is the linear combination c1x̨1 + c2x̨2 for any
constants c1 and c2.
(An equivalent pair of statements is that if x1 and x2 are solutions to
x̨ Õ = P(t)x̨ and c1 is any constant, then BOTH 1 x1 + x2 AND 2 c1x1 are
also solutions to x̨ Õ = P(t)x̨ ).

‘æ EXERCISE: Prove this statement.

Òæ By applying the principle of superposition repeatedly, we see that if
x̨1(t), x̨2(t), . . ., x̨k(t) is any finite set of solutions to the homogeneous

system x̨ Õ = P(t)x̨ , then so is any finite linear combination of those solutions,
c1x̨1(t) + c2x̨2(t) + . . . + ck x̨k(t) .

‘æ It can be shown that for a general solution of n linear homogeneous ODEs
x̨ Õ = P(t)x̨ on an interval – < t < —, we need exactly n LINEARLY
INDEPENDENT solution vector functions x̨1(t), x̨2(t), . . . , x̨n(t) on that same
interval – < t < —. In that case, the general solution of x̨ Õ = P(t)x̨ is

x̨(t) = c1x̨1(t) + c2x̨2(t) + . . . + cnx̨n(t).

16 / 131



Introduction
Analytical Solutions to Systems of First Order ODEs
Numerical Methods for Systems of First Order ODEs

Geometrical Study of Solutions to Systems of First Order ODEs
Appendix

Finding Eigenvalues and Eigenvectors Using Matlab
CASE 1: Solving x̨ Õ = Ax̨ , An◊n with n di�erent eigenvalues
CASE 2: Solving x̨ Õ = Ax̨ , An◊n with complex eigenvalues
CASE 3: Solving x̨ Õ = Ax̨ , An◊n with repeated eigenvalues

Òæ NOTE as for homogeneous linear ODEs, the principle of superposition applies
to systems of first order linear ODEs: If the vector functions x̨1(t) and x̨2(t) are
solutions to x̨ Õ = P(t )̨x, then so is the linear combination c1x̨1 + c2x̨2 for any
constants c1 and c2.
(An equivalent pair of statements is that if x1 and x2 are solutions to
x̨ Õ = P(t)x̨ and c1 is any constant, then BOTH 1 x1 + x2 AND 2 c1x1 are
also solutions to x̨ Õ = P(t)x̨ ).

‘æ EXERCISE: Prove this statement.
Òæ By applying the principle of superposition repeatedly, we see that if

x̨1(t), x̨2(t), . . ., x̨k(t) is any finite set of solutions to the homogeneous
system x̨ Õ = P(t)x̨ , then so is any finite linear combination of those solutions,
c1x̨1(t) + c2x̨2(t) + . . . + ck x̨k(t) .

‘æ It can be shown that for a general solution of n linear homogeneous ODEs
x̨ Õ = P(t)x̨ on an interval – < t < —, we need exactly n LINEARLY
INDEPENDENT solution vector functions x̨1(t), x̨2(t), . . . , x̨n(t) on that same
interval – < t < —. In that case, the general solution of x̨ Õ = P(t)x̨ is

x̨(t) = c1x̨1(t) + c2x̨2(t) + . . . + cnx̨n(t).

16 / 131



Introduction
Analytical Solutions to Systems of First Order ODEs
Numerical Methods for Systems of First Order ODEs

Geometrical Study of Solutions to Systems of First Order ODEs
Appendix

Finding Eigenvalues and Eigenvectors Using Matlab
CASE 1: Solving x̨ Õ = Ax̨ , An◊n with n di�erent eigenvalues
CASE 2: Solving x̨ Õ = Ax̨ , An◊n with complex eigenvalues
CASE 3: Solving x̨ Õ = Ax̨ , An◊n with repeated eigenvalues

Òæ NOTE as for homogeneous linear ODEs, the principle of superposition applies
to systems of first order linear ODEs: If the vector functions x̨1(t) and x̨2(t) are
solutions to x̨ Õ = P(t )̨x, then so is the linear combination c1x̨1 + c2x̨2 for any
constants c1 and c2.
(An equivalent pair of statements is that if x1 and x2 are solutions to
x̨ Õ = P(t)x̨ and c1 is any constant, then BOTH 1 x1 + x2 AND 2 c1x1 are
also solutions to x̨ Õ = P(t)x̨ ).

‘æ EXERCISE: Prove this statement.
Òæ By applying the principle of superposition repeatedly, we see that if

x̨1(t), x̨2(t), . . ., x̨k(t) is any finite set of solutions to the homogeneous
system x̨ Õ = P(t)x̨ , then so is any finite linear combination of those solutions,
c1x̨1(t) + c2x̨2(t) + . . . + ck x̨k(t) .

‘æ It can be shown that for a general solution of n linear homogeneous ODEs
x̨ Õ = P(t)x̨ on an interval – < t < —, we need exactly n LINEARLY
INDEPENDENT solution vector functions x̨1(t), x̨2(t), . . . , x̨n(t) on that same
interval – < t < —.

In that case, the general solution of x̨ Õ = P(t)x̨ is

x̨(t) = c1x̨1(t) + c2x̨2(t) + . . . + cnx̨n(t).

16 / 131



Introduction
Analytical Solutions to Systems of First Order ODEs
Numerical Methods for Systems of First Order ODEs

Geometrical Study of Solutions to Systems of First Order ODEs
Appendix

Finding Eigenvalues and Eigenvectors Using Matlab
CASE 1: Solving x̨ Õ = Ax̨ , An◊n with n di�erent eigenvalues
CASE 2: Solving x̨ Õ = Ax̨ , An◊n with complex eigenvalues
CASE 3: Solving x̨ Õ = Ax̨ , An◊n with repeated eigenvalues

Òæ NOTE as for homogeneous linear ODEs, the principle of superposition applies
to systems of first order linear ODEs: If the vector functions x̨1(t) and x̨2(t) are
solutions to x̨ Õ = P(t )̨x, then so is the linear combination c1x̨1 + c2x̨2 for any
constants c1 and c2.
(An equivalent pair of statements is that if x1 and x2 are solutions to
x̨ Õ = P(t)x̨ and c1 is any constant, then BOTH 1 x1 + x2 AND 2 c1x1 are
also solutions to x̨ Õ = P(t)x̨ ).

‘æ EXERCISE: Prove this statement.
Òæ By applying the principle of superposition repeatedly, we see that if

x̨1(t), x̨2(t), . . ., x̨k(t) is any finite set of solutions to the homogeneous
system x̨ Õ = P(t)x̨ , then so is any finite linear combination of those solutions,
c1x̨1(t) + c2x̨2(t) + . . . + ck x̨k(t) .

‘æ It can be shown that for a general solution of n linear homogeneous ODEs
x̨ Õ = P(t)x̨ on an interval – < t < —, we need exactly n LINEARLY
INDEPENDENT solution vector functions x̨1(t), x̨2(t), . . . , x̨n(t) on that same
interval – < t < —. In that case, the general solution of x̨ Õ = P(t)x̨ is

x̨(t) = c1x̨1(t) + c2x̨2(t) + . . . + cnx̨n(t).

16 / 131



Introduction
Analytical Solutions to Systems of First Order ODEs
Numerical Methods for Systems of First Order ODEs

Geometrical Study of Solutions to Systems of First Order ODEs
Appendix

Finding Eigenvalues and Eigenvectors Using Matlab
CASE 1: Solving x̨ Õ = Ax̨ , An◊n with n di�erent eigenvalues
CASE 2: Solving x̨ Õ = Ax̨ , An◊n with complex eigenvalues
CASE 3: Solving x̨ Õ = Ax̨ , An◊n with repeated eigenvalues

Òæ Recall (see Supplementary Lecture on Eigenvalues/Eigenvectors) that we can
check if a set of n dimensional vectors is linearly independent by forming the
matrix A whose columns consist of those n vectors, then checking that
det(A) ”= 0.

Òæ We can do something similar for vector functions x̨1(t), x̨2(t), . . ., x̨n(t): Form
the matrix X(t) whose columns consist of the vector functions x̨1(t), x̨2(t), . . .,
x̨n(t) and if for a fixed t value, t = t0 we have that det(X(t0)) - also denoted
W [x̨1, x̨2, . . ., x̨n](t0) and called the WRONSKIAN of the vector functions
x̨1(t), x̨2(t), . . ., x̨n(t) at t = t0 - is NOT = 0, then the vector functions x̨1(t),
x̨2(t), . . ., x̨n(t) are linearly independent at t = t0.
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CASE 1: Solving x̨ Õ = Ax̨ , An◊n with n di�erent eigenvalues
CASE 2: Solving x̨ Õ = Ax̨ , An◊n with complex eigenvalues
CASE 3: Solving x̨ Õ = Ax̨ , An◊n with repeated eigenvalues

I In the approach that we will use for solving the
homogeneous system x̨ Õ = Ax̨ (where An◊n is a
constant matrix), we will ensure that the n
solutions we obtain are linearly independent
from the outset - and hence that their linear
combination forms a general solution to the
system x̨ Õ = Ax̨ .

I So there will be no real need to check the linear
independence of our solution vector functions
using the Wronskian.
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Solving the homogeneous constant coe�cient system x̨ Õ = Ax̨

Òæ Here we are assuming that An◊n is a constant matrix. Note that
when n = 1 we have the simple first order system x Õ = ax whose
solution is x(t) = ceat , where c is an arbitrary constant.

Òæ Recall more generally for ODEs such as ax ÕÕ + bx Õ + cx = 0 (and
higher order linear constant coe�cient homogeneous ODEs), we
assumed solutions of the form x(t) = cert and used a method of
undetermined coe�cients approach to determine what appropriate
values for r were (treating c as an arbitrary constant which could
be di�erent for di�erent values of r).

I Using a similar logic as in that 2nd (or higher) order single
homogeneous linear ODE case, we assume solutions to x̨ Õ = Ax̨ of
the form x̨(t) = c̨ertwhere the constant vector
c̨ = [c1, c2, . . . , cn]T and the exponent r are to be determined.

I As always, we proceed by di�erentiating x̨(t) = c̨ert and
substituting into the ODE system x̨ Õ = Ax̨ .
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CASE 2: Solving x̨ Õ = Ax̨ , An◊n with complex eigenvalues
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REMINDER: Solving x̨ Õ = Ax̨ by assuming x̨(t) = c̨ert

Òæ So x̨ Õ =

r c̨ert , and substituting into the ODE system we get

r c̨ert = Ac̨ert ∆ r c̨ = Ac̨ (since ert > 0 ’ t, we can divide by it).
Equivalently, (A ≠ rI)̨c = 0̨.

 So the r values we seek are exactly the EIGENVALUES of A and the c̨ values
we seek are the corresponding EIGENVECTORS of A.

Òæ To get a general solution of x̨ Õ = Ax̨ if An◊n, we will need n linearly
independent eigenvectors c̨1, c̨2, . . ., c̨n along with their corresponding
eigenvalues r1, r2, . . ., rn. In that case, it’s easy to show that the solution
vector functions c̨1er1t , c̨2er2t , . . ., c̨nernt must also be linearly independent.
And therefore a general solution to x̨ Õ = Ax̨ would be

x̨(t) = B1c̨1er1t + B2c̨2er2t + . . . + Bnc̨nernt ,

where B1, B2, . . . , Bn are arbitrary constants.
NOTE it does not matter if there are repeated eigenvalues, i.e. ri = rj for some
1 Æ i < j Æ n, PROVIDED there are n linearly independent eigenvectors (see also
EXAMPLES 4, 5, 6 and 10 of the Supplementary Lecture on
Eigenvalues/Eigenvectors).
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I So in summary, to find the general solution to x̨ Õ = Ax̨, we find the
eigenvalues and corresponding eigenvectors of A.

I For each eigenvalue-eigenvector pair ri , c̨i (so that Ac̨i = ri c̨i ), 1 Æ i Æ n, the
vector function Bi c̨i eri t is a solution to x̨ Õ = Ax̨ (where Bi is an arbitrary
constant).

I If we find n linearly independent eigenvectors c̨1, c̨2, . . . , c̨n with corresponding
eigenvalues r1, r2, . . . , rn, then a general solution to x̨ Õ = Ax̨ is

x̨(t) = B1c̨1er1t + B2c̨2er2t + . . . + Bnc̨nernt , (2)

where B1, B2, . . . , Bn are arbitrary constants.

I So, for example, if An◊n has n di�erent eigenvalues, then we easily get a
general solution of the form of Equation (2).

I So our solution will depend on the eigenvalues (distinct, repeated, complex)
and most importantly on the number of linearly independent eigenvectors
(repeated eigenvalues case only) that we get. We will consider all of the
relevant scenarios in the following examples.
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Finding Eigenvalues and Eigenvectors Using Matlab

I Although in the following examples I will show some of the details of how to
find the eigenvalues and eigenvectors, for practical purposes it will typically be
more convenient to calculate these using Matlab’s in-built eig() function.

I Crucially, eig() will also give a complete diagonalisation of a diagonalisable
square matrix A  i.e., it will find an invertible matrix P such that
P≠1AP = D, a diagonal matrix with the eigenvalues of A on the main diagonal.

‘æ If A is an n ◊ n matrix, then

>> eig(A) returns a column vector with the eigenvalues of A.
>> [P, D] = eig(A) returns a diagonal matrix D (or whatever else you

want to call it) with the eigenvalues of A on its main diagonal, and
an invertible matrix P (or whatever else you want to call it) whose
columns are normalised (scaled so that have length 1) eigenvectors
of A in the same order as the corresponding eigenvalues in D. Thus
P≠1AP = D.
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I For example (see also EXAMPLE 5 next), with

A =
C

4/3 ≠1
≠2/3 1

D

, then

>> eig(A) returns

C
2.0000
0.3333

D

and

>> [P, D] = eig(A) returns

P =
C

0.8321 0.7071
≠0.5547 0.7071

D

and D =
C

2.0000 0
0 0.3333

D

I I’ll leave you to figure out how you could scale the
eigenvectors (columns of P) to have eigenvectors with
whole number entries.

I Type help eig in the Matlab command window for more
information on eig().
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CASE 1: Solving x̨ Õ = Ax̨ , An◊n with n di�erent eigenvalues

Òæ EXAMPLE 5 Consider the (modified form of the) homogeneous
system from EXAMPLE 2, d

dt

Ë
x
y

È
=

Ë
4/3 ≠1

≠2/3 1

È Ë
x
y

È
. Find a

general solution.

First we find the eigenvalues and corresponding eigenvectors of
Ë

4/3 ≠1
≠2/3 1

È
by

solving

0 =
--- 4/3 ≠ ⁄ ≠1

≠2/3 1 ≠ ⁄

--- =
14

3
≠ ⁄)(1 ≠ ⁄

2
≠

2
3

= ⁄2 ≠
7
3

⁄ + 2
3

= 0

∆ 3⁄2 ≠ 7⁄ + 2 = 0 or (3⁄ ≠ 1)(⁄ ≠ 2) = 0.

So ⁄1 = 1
3 and ⁄2 = 2 are the two (di�erent) eigenvalues of A =

Ë
4/3 ≠1

≠2/3 1

È
.
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REMINDER: Solving d
dt

Ë
x
y

È
=

Ë
4/3 ≠1

≠2/3 1

ÈË
x
y

È
, eigenvalues 1

3 , 2.

I To find an eigenvector c̨ = [c1, c2]T corresponding to eigenvalue
⁄1 = 1

3 , we solve (A ≠ 1
3 I)̨c = 0̨,

or equivalently
Ë 1 ≠1

≠2/3 2
3

È Ë
c1
c2

È
=

Ë
0
0

È
∆ c1 = c2 and c̨ =

Ë
1
1

È

is an eigenvector (c2 = 1) corresponding to eigenvalue ⁄1 = 1
3 .

I Similarly, to find an eigenvector c̨ = [c1, c2]T corresponding to
eigenvalue ⁄2 = 2, we solve (A ≠ 2I)̨c = 0̨, or equivalently

Ë
≠2/3 ≠1
≠2/3 ≠1

È Ë
c1
c2

È
=

Ë
0
0

È
∆ c2 = ≠

2
3

c1 and c̨ =
Ë

3
≠2

È

is an eigenvector corresponding to (c1 = 3) eigenvalue ⁄2 = 2.

I And a general solution is
x̨(t) =

5
x(t)
y(t)

6
= B1

5
1
1

6
e 1

3 t + B2

5
3

≠2

6
e2t , where B1

and B2 are arbitrary constants.
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5
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6
e 1
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5
3
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6
e2t , where B1

and B2 are arbitrary constants.
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Òæ EXAMPLE 6 Recall from EXAMPLE 2 of the
Supplementary Lecture on Eigenvalues/Eigenvectors that
A =

Ë
2 5
6 1

È
, has eigenvalue ⁄1 = 7 with corresponding

eigenvector
Ë

1
1

È
and eigenvalue ⁄2 = ≠4 with

corresponding eigenvector
Ë

≠5
6

È
.

Use this information to find a general solution to
˙̨x(t) = Ax̨ .

I ANSWER: x̨(t) = B1

C
1
1

D

e7t + B2

C
≠5

6

D

e≠4t , where B1

and B2 are arbitrary constants.
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Òæ EXAMPLE 7 Similarly, from EXAMPLE 3 of the Supplementary

Lecture on Eigenvalues/Eigenvectors, since for A =

C
2 0 0

≠4 ≠5 0
1 0 4

D

we have eigenvalues 2, ≠5, and 4 with corresponding eigenvectorsC
≠14

8
7

D
,

C
0
1
0

D
, and

C
0
0
1

D
respectively, then a general solution to

˙̨x = Ax̨ is

x̨ = B1

C
≠14

8
7

D
e2t + B2

C
0
1
0

D
e≠5t + B3

C
0
0
1

D
e4t ,

where B1, B2, and B3 are arbitrary constants.
I NOTE since the coe�cient matrix A in ˙̨x = Ax̨ is (lower)

triangular, we can also solve this system by solving for x1(t), then
substituting that into the second equation and solving for x2(t),
then substituting those two solutions into the third equation and
solving for x3(t).
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Òæ EXAMPLE 8 Solve the system
C

x
y
z

DÕ

=

C
3 0 0
0 ≠ 1

4 0
0 0 2

D C
x
y
z

D

Òæ ANSWER There is no need to find eigenvalues and eigenvectors!!!
Since the coe�cient matrix is a diagonal matrix, these are
de-coupled equations, meaning that we can just solve them
individually.
The first equation is x Õ = 3x ∆ x = B1e3t (where B1 an arbitrary
constant).
The second equation is y Õ = ≠ 1

4 y ∆ y = B2e≠ 1
4 t (where B2 an

arbitrary constant).
The third equation is z Õ = 2z ∆ z = B3e2t (where B3 an arbitrary
constant).

Òæ So the general solution is

x̨ =

C
x
y
z

D
= B1

C
1
0
0

D
e3t + B2

C
0
1
0

D
e≠ 1

4 t + B3

C
0
0
1

D
e2t .
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Òæ NOTE it will always be similarly easy to solve systems of
the form x̨ Õ = Dx̨ where D is a diagonal matrix.

With
this in mind, I’ll present an alternative way of viewing the
solution of a more general x̨ Õ = Ax̨ which uses the
diagonalisation of A (if it exists) and is useful when
solving non-homogeneous systems.

Òæ This leads to another useful way of viewing the solution
of x̨ Õ = Ax̨ when An◊n has n linearly independent
eigenvectors, which involves the diagonalisation of A.

Although this approach is equivalent to the one we have
been using so far, it has the advantage of being very
useful when solving NON-HOMOGENEOUS problems (so
we don’t have to use the Method of Undetermined
Coe�cients or other approaches).
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Òæ SOLVING ˙̨x = Ax̨ USING THE DIAGONALISATION OF A:

I Assuming A can be diagonalised so that P≠1AP = D is a
diagonal matrix (see the Supplementary Lecture on
Eigenvalues/Eigenvectors for details), then A = PDP≠1.

I So x̨ Õ = Ax̨ can be written as

x̨ Õ = PDP≠1x̨ ∆
P≠1x̨ Õ = DP≠1x̨ ∆

(P≠1x̨) Õ = D(P≠1x̨) since P is a constant matrix.

Òæ This last equation involves an unknown vector P≠1x̨ and its derivative, and as
in the last example the coe�cient matrix D is DIAGONAL. Hence it is easy to
solve for P≠1x̨ - we just solve each equation in the system separately!
(If you have di�culty seeing this as a “diagonal” linear homogeneous system of
ODEs, make the substitution y̨ = P≠1x̨ and then the system is y̨ Õ = Dy̨ where
D is a diagonal matrix).

Òæ Having solved for P≠1x̨ and written the solution in vector form, then to find the
solution, x̨ , to the original problem we simply multiply P≠1x̨ on the left by P.
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Òæ EXAMPLE 9 Redo EXAMPLE 5 using the diagonalisation
approach: Solve d

dt

Ë
x
y

È
=

Ë
4/3 ≠1

≠2/3 1

È Ë
x
y

È
.

In EXAMPLE 5 we found eigenvalues 1
3 and 2 and corresponding

eigenvectors
Ë

1
1

È
and

Ë
3

≠2

È
, so that

P =
Ë

1 3
1 ≠2

È
and D =

Ë 1
3 0
0 2

È
.

(NOTE, P≠1 is NOT needed. We only need P and D = P≠1AP. But, for the
terminally curious, P≠1 =

Ë
2/5 3/5
1/5 ≠1/5

È
).

So the solution to (P≠1x̨) Õ = D(P≠1x̨) is P≠1x̨ = B1

Ë
1
0

È
e

1
3 t + B2

Ë
0
1

È
e2t .

And x̨ =
Ë

x
y

È
= P(P≠1x̨) =

Ë
1 3
1 ≠2

È 1
B1

Ë
1
0

È
e

1
3 t + B2

Ë
0
1

È
e2t

2
=

B1

Ë
1
1

È
e

1
3 t + B2

Ë
3

≠2

È
e2t . And looking at each component of this vector

equation, we see that this is exactly the answer we got before in EXAMPLE 5. (Here,
B1 and B2 are arbitrary constants).

31 / 131



Introduction
Analytical Solutions to Systems of First Order ODEs
Numerical Methods for Systems of First Order ODEs

Geometrical Study of Solutions to Systems of First Order ODEs
Appendix

Finding Eigenvalues and Eigenvectors Using Matlab
CASE 1: Solving x̨ Õ = Ax̨ , An◊n with n di�erent eigenvalues
CASE 2: Solving x̨ Õ = Ax̨ , An◊n with complex eigenvalues
CASE 3: Solving x̨ Õ = Ax̨ , An◊n with repeated eigenvalues

Òæ EXAMPLE 9 Redo EXAMPLE 5 using the diagonalisation
approach: Solve d

dt

Ë
x
y

È
=

Ë
4/3 ≠1

≠2/3 1

È Ë
x
y

È
.

In EXAMPLE 5 we found eigenvalues 1
3 and 2 and corresponding

eigenvectors
Ë

1
1

È
and

Ë
3

≠2

È
, so that

P =

Ë
1 3
1 ≠2

È
and D =

Ë 1
3 0
0 2

È
.

(NOTE, P≠1 is NOT needed. We only need P and D = P≠1AP. But, for the
terminally curious, P≠1 =

Ë
2/5 3/5
1/5 ≠1/5

È
).

So the solution to (P≠1x̨) Õ = D(P≠1x̨) is P≠1x̨ = B1

Ë
1
0

È
e

1
3 t + B2

Ë
0
1

È
e2t .

And x̨ =
Ë

x
y

È
= P(P≠1x̨) =

Ë
1 3
1 ≠2

È 1
B1

Ë
1
0

È
e

1
3 t + B2

Ë
0
1

È
e2t

2
=

B1

Ë
1
1

È
e

1
3 t + B2

Ë
3

≠2

È
e2t . And looking at each component of this vector

equation, we see that this is exactly the answer we got before in EXAMPLE 5. (Here,
B1 and B2 are arbitrary constants).

31 / 131



Introduction
Analytical Solutions to Systems of First Order ODEs
Numerical Methods for Systems of First Order ODEs

Geometrical Study of Solutions to Systems of First Order ODEs
Appendix

Finding Eigenvalues and Eigenvectors Using Matlab
CASE 1: Solving x̨ Õ = Ax̨ , An◊n with n di�erent eigenvalues
CASE 2: Solving x̨ Õ = Ax̨ , An◊n with complex eigenvalues
CASE 3: Solving x̨ Õ = Ax̨ , An◊n with repeated eigenvalues

Òæ EXAMPLE 9 Redo EXAMPLE 5 using the diagonalisation
approach: Solve d

dt

Ë
x
y

È
=

Ë
4/3 ≠1

≠2/3 1

È Ë
x
y

È
.

In EXAMPLE 5 we found eigenvalues 1
3 and 2 and corresponding

eigenvectors
Ë

1
1

È
and

Ë
3

≠2

È
, so that

P =
Ë

1 3
1 ≠2

È

and D =
Ë 1

3 0
0 2

È
.

(NOTE, P≠1 is NOT needed. We only need P and D = P≠1AP. But, for the
terminally curious, P≠1 =

Ë
2/5 3/5
1/5 ≠1/5

È
).

So the solution to (P≠1x̨) Õ = D(P≠1x̨) is P≠1x̨ = B1

Ë
1
0

È
e

1
3 t + B2

Ë
0
1

È
e2t .

And x̨ =
Ë

x
y

È
= P(P≠1x̨) =

Ë
1 3
1 ≠2

È 1
B1

Ë
1
0

È
e

1
3 t + B2

Ë
0
1

È
e2t

2
=

B1

Ë
1
1

È
e

1
3 t + B2

Ë
3

≠2

È
e2t . And looking at each component of this vector

equation, we see that this is exactly the answer we got before in EXAMPLE 5. (Here,
B1 and B2 are arbitrary constants).

31 / 131



Introduction
Analytical Solutions to Systems of First Order ODEs
Numerical Methods for Systems of First Order ODEs

Geometrical Study of Solutions to Systems of First Order ODEs
Appendix

Finding Eigenvalues and Eigenvectors Using Matlab
CASE 1: Solving x̨ Õ = Ax̨ , An◊n with n di�erent eigenvalues
CASE 2: Solving x̨ Õ = Ax̨ , An◊n with complex eigenvalues
CASE 3: Solving x̨ Õ = Ax̨ , An◊n with repeated eigenvalues

Òæ EXAMPLE 9 Redo EXAMPLE 5 using the diagonalisation
approach: Solve d

dt

Ë
x
y

È
=

Ë
4/3 ≠1

≠2/3 1

È Ë
x
y

È
.

In EXAMPLE 5 we found eigenvalues 1
3 and 2 and corresponding

eigenvectors
Ë

1
1

È
and

Ë
3

≠2

È
, so that

P =
Ë

1 3
1 ≠2

È
and D =

Ë 1
3 0
0 2

È
.

(NOTE, P≠1 is NOT needed. We only need P and D = P≠1AP. But, for the
terminally curious, P≠1 =

Ë
2/5 3/5
1/5 ≠1/5

È
).

So the solution to (P≠1x̨) Õ = D(P≠1x̨) is P≠1x̨ = B1

Ë
1
0

È
e

1
3 t + B2

Ë
0
1

È
e2t .

And x̨ =
Ë

x
y

È
= P(P≠1x̨) =

Ë
1 3
1 ≠2

È 1
B1

Ë
1
0

È
e

1
3 t + B2

Ë
0
1

È
e2t

2
=

B1

Ë
1
1

È
e

1
3 t + B2

Ë
3

≠2

È
e2t . And looking at each component of this vector

equation, we see that this is exactly the answer we got before in EXAMPLE 5. (Here,
B1 and B2 are arbitrary constants).

31 / 131



Introduction
Analytical Solutions to Systems of First Order ODEs
Numerical Methods for Systems of First Order ODEs

Geometrical Study of Solutions to Systems of First Order ODEs
Appendix

Finding Eigenvalues and Eigenvectors Using Matlab
CASE 1: Solving x̨ Õ = Ax̨ , An◊n with n di�erent eigenvalues
CASE 2: Solving x̨ Õ = Ax̨ , An◊n with complex eigenvalues
CASE 3: Solving x̨ Õ = Ax̨ , An◊n with repeated eigenvalues

Òæ EXAMPLE 9 Redo EXAMPLE 5 using the diagonalisation
approach: Solve d

dt

Ë
x
y

È
=

Ë
4/3 ≠1

≠2/3 1

È Ë
x
y

È
.

In EXAMPLE 5 we found eigenvalues 1
3 and 2 and corresponding

eigenvectors
Ë

1
1

È
and

Ë
3

≠2

È
, so that

P =
Ë

1 3
1 ≠2

È
and D =

Ë 1
3 0
0 2

È
.

(NOTE, P≠1 is NOT needed. We only need P and D = P≠1AP. But, for the
terminally curious, P≠1 =

Ë
2/5 3/5
1/5 ≠1/5

È
).

So the solution to (P≠1x̨) Õ = D(P≠1x̨) is P≠1x̨ = B1

Ë
1
0

È
e

1
3 t + B2

Ë
0
1

È
e2t .

And x̨ =
Ë

x
y

È
= P(P≠1x̨) =

Ë
1 3
1 ≠2

È 1
B1

Ë
1
0

È
e

1
3 t + B2

Ë
0
1

È
e2t

2
=

B1

Ë
1
1

È
e

1
3 t + B2

Ë
3

≠2

È
e2t . And looking at each component of this vector

equation, we see that this is exactly the answer we got before in EXAMPLE 5. (Here,
B1 and B2 are arbitrary constants).

31 / 131



Introduction
Analytical Solutions to Systems of First Order ODEs
Numerical Methods for Systems of First Order ODEs

Geometrical Study of Solutions to Systems of First Order ODEs
Appendix

Finding Eigenvalues and Eigenvectors Using Matlab
CASE 1: Solving x̨ Õ = Ax̨ , An◊n with n di�erent eigenvalues
CASE 2: Solving x̨ Õ = Ax̨ , An◊n with complex eigenvalues
CASE 3: Solving x̨ Õ = Ax̨ , An◊n with repeated eigenvalues

Òæ EXAMPLE 9 Redo EXAMPLE 5 using the diagonalisation
approach: Solve d

dt

Ë
x
y

È
=

Ë
4/3 ≠1

≠2/3 1

È Ë
x
y

È
.

In EXAMPLE 5 we found eigenvalues 1
3 and 2 and corresponding

eigenvectors
Ë

1
1

È
and

Ë
3

≠2

È
, so that

P =
Ë

1 3
1 ≠2

È
and D =

Ë 1
3 0
0 2

È
.

(NOTE, P≠1 is NOT needed. We only need P and D = P≠1AP. But, for the
terminally curious, P≠1 =

Ë
2/5 3/5
1/5 ≠1/5

È
).

So the solution to (P≠1x̨) Õ = D(P≠1x̨) is P≠1x̨ = B1

Ë
1
0

È
e

1
3 t + B2

Ë
0
1

È
e2t .

And x̨ =
Ë

x
y

È
= P(P≠1x̨) =

Ë
1 3
1 ≠2

È 1
B1

Ë
1
0

È
e

1
3 t + B2

Ë
0
1

È
e2t

2
=

B1

Ë
1
1

È
e

1
3 t + B2

Ë
3

≠2

È
e2t . And looking at each component of this vector
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Òæ EXAMPLE 10 Similarly, redo EXAMPLE 7 with the diagonalisation approach:

Solving d
dt

AC
x
y
z

DB
=

C
2 0 0

≠4 ≠5 0
1 0 4

D C
x
y
z

D
where

C
2 0 0

≠4 ≠5 0
1 0 4

D
has

eigenvalues 2, ≠5, 4 and corresponding eigenvectors

C
≠14

8
7

D
,

C
0
1
0

D
, and

C
0
0
1

D

respectively, is equivalent to solving

d
dt

A
P≠1

C
x
y
z

DB
=

C
2 0 0
0 ≠5 0
0 0 4

D A
P≠1

C
x
y
z

DB
, where P =

C
≠14 0 0

8 1 0
7 0 1

D
.

So P≠1

C
x
y
z

D
= B1

C
1
0
0

D
e2t + B2

C
0
1
0

D
e≠5t + B3

C
0
0
1

D
e4t .

And

C
x
y
z

D
= P

A
B1

C
1
0
0

D
e2t + B2

C
0
1
0

D
e≠5t + B3

C
0
0
1

D
e4t

B
=

B1

C
≠14

8
7

D
e2t + B2

C
0
1
0

D
e≠5t + B3

C
0
0
1

D
e4t (where B1, B2, B3 are arbitrary constants).
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CASE 1: Solving x̨ Õ = Ax̨ , An◊n with n di�erent eigenvalues
CASE 2: Solving x̨ Õ = Ax̨ , An◊n with complex eigenvalues
CASE 3: Solving x̨ Õ = Ax̨ , An◊n with repeated eigenvalues

CASE 2: Solving x̨ Õ = Ax̨ , An◊n with complex eigenvalues

(but still n linearly independent eigenvectors)

Òæ Approach will be similar to how we extract real valued (linearly independent)
solutions to ax ÕÕ + bx Õ + cx = 0 when the characteristic polynomial ar2 + br + c
had (non-real) complex roots (ignore this comment if you have not solved
second order constant coe�cient linear di�erential equations before).

Òæ First observe that if A is a matrix with real entries, then when finding
eigenvalues the characteristic equation det(A ≠ ⁄I) = 0 has only real coe�cients
so all (non-real) complex eigenvalues occur in conjugate pairs: ⁄ = a ± bi .
It is not di�cult to show that the corresponding eigenvectors also occur in
conjugate pairs. So if x̨ is an eigenvector corresponding to eigenvalue a + ib,
then x̨ is an eigenvector corresponding to the eigenvalue a ≠ ib (x̨ denotes the
vector whose entries are the complex conjugates of the corresponding entries in
x̨).
PROOF: Ax̨ = (a + ib)x̨ so taking the complex conjugate of both sides of

this equation (recalling that A has only real entries so A = A and that
–— = –—), then Ax̨ = (a ≠ ib)x̨ .
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Òæ So let’s see how to extract real solutions from solutions which involve
eigenvalue ⁄1 = a + ib with corresponding eigenvector ų + i v̨ (where ų and v̨
have real entries only) and the complex conjugate eigenvalue ⁄2 = a ≠ ib with
corresponding eigenvector ų ≠ i v̨ .

I Recall that in general if r is an eigenvalue of A and c̨ is the corresponding
eigenvector, then c̨ert is a solution to x̨ Õ = Ax̨ .
Applying that in this case, we have (complex-valued) solutions (ų + i v̨)eat+ibt

and (ų ≠ i v̨)eat≠ibt .
 Clearly, since both complex-valued vector functions above are solutions to

x̨ Õ = Ax̨ then so are their real and imaginary parts. Without loss of generality,

(ų + i v̨)eat+ibt = (ų + i v̨)(eat cos bt + ieat sin bt) =

eat(ų cos bt ≠ v̨ sin bt) + i eat(ų sin bt + v̨ cos bt).
So the two vector functions eat(ų cos bt ≠ v̨ sin bt) and eat(ų sin bt + v̨ cos bt) are
real-valued solutions to x̨ Õ = Ax̨ . Furthermore, it can be shown that they are linearly
independent (so we have 2 linearly independent eigenvectors to go along with the 2
complex-conjugate eigenvalues a ± ib).
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and (ų ≠ i v̨)eat≠ibt .
 Clearly, since both complex-valued vector functions above are solutions to

x̨ Õ = Ax̨ then so are their real and imaginary parts. Without loss of generality,
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CASE 1: Solving x̨ Õ = Ax̨ , An◊n with n di�erent eigenvalues
CASE 2: Solving x̨ Õ = Ax̨ , An◊n with complex eigenvalues
CASE 3: Solving x̨ Õ = Ax̨ , An◊n with repeated eigenvalues

Òæ SUMMARY Instead of trying to remember the previous result as a

formula, just use the following steps to get 2 linearly

independent solutions from two complex conjugate eigenvalues a ± bi
to the matrix A when solving x̨ Õ = Ax̨:

1. Pick ONE of the eigenvalues, ⁄1 = a + ib or ⁄2 = a ≠ ib, and
find the corresponding eigenvector v̨ by solving
(A ≠ ⁄I)̨v = 0̨ for v̨ .

2. A COMPLEX-VALUED solution to x̨ Õ = Ax̨ would then be
ų = e⁄1t v̨ or ų = e⁄2t v̨ depending on which eigenvalue,

⁄1 or ⁄2, was used in Step 1.
3. Write the complex-valued solution, ų, from Step 2 in terms of

its real and imaginary parts: ų = ų1 + i ų2, where both ų1
and ų2 are vectors containing only real-valued entries.

4. ų1 and ų2 will be two linearly independent REAL-VALUED
solutions to x̨ Õ = Ax̨.

So, for example, any general solution to x̨ Õ = Ax̨ would include the terms
B1ų1 + B2ų2, where B1 and B2 are arbitrary constants.
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and ų2 are vectors containing only real-valued entries.
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Òæ SUMMARY Instead of trying to remember the previous result as a

formula, just use the following steps to get 2 linearly

independent solutions from two complex conjugate eigenvalues a ± bi
to the matrix A when solving x̨ Õ = Ax̨:

1. Pick ONE of the eigenvalues, ⁄1 = a + ib or ⁄2 = a ≠ ib, and
find the corresponding eigenvector v̨ by solving
(A ≠ ⁄I)̨v = 0̨ for v̨ .

2. A COMPLEX-VALUED solution to x̨ Õ = Ax̨ would then be
ų = e⁄1t v̨ or ų = e⁄2t v̨ depending on which eigenvalue,

⁄1 or ⁄2, was used in Step 1.
3. Write the complex-valued solution, ų, from Step 2 in terms of

its real and imaginary parts: ų = ų1 + i ų2, where both ų1
and ų2 are vectors containing only real-valued entries.

4. ų1 and ų2 will be two linearly independent REAL-VALUED
solutions to x̨ Õ = Ax̨.

So, for example, any general solution to x̨ Õ = Ax̨ would include the terms
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its real and imaginary parts: ų = ų1 + i ų2, where both ų1
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Òæ EXAMPLE 11 Solve the initial value problem x̨ Õ = Ax̨ ,
x̨(0) =

Ë
1
1

È
, where A =

Ë
1 ≠5
1 ≠3

È
.

I First to find the eigenvalues we solve
--- 1 ≠ ⁄ ≠5

1 ≠3 ≠ ⁄

--- = 0

∆ (1 ≠ ⁄)(≠3 ≠ ⁄) + 5 = 0 or ⁄2 + 2⁄ + 2 = 0 ∆
⁄ = ≠1 ± i .

Next, let’s select the eigenvalue ⁄ = ≠1 + i and find a corresponding
eigenvector: We solve the equation
Ë

2 ≠ i ≠5
1 ≠2 ≠ i

È Ë
v1
v2

È
=

Ë
0
0

È
. BOTH equations ∆ v1 = (2+i)v2 so

Ë
2 + i

1

È

is an eigenvector (setting v2 = 1) corresponding to eigenvalue ⁄ = ≠1 + i .
So a complex valued solution to x̨ Õ = Ax̨ is

e(≠1+i)t
Ë

2 + i
1

È
= e≠t(cos t+i sin t)

Ë
2 + i

1

È
= e≠t

Ë
2 cos t ≠ sin t

cos t

È
+i e≠t

Ë
2 sin t + cos t

sin t

È
.

So the general solution to x̨ Õ = Ax̨ is
x̨(t) = B1e≠t

Ë
2 cos t ≠ sin t

cos t

È
+ B2e≠t

Ë
2 sin t + cos t

sin t

È
(B1, B2 arbitrary constants).
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Òæ EXAMPLE 11 Solve the initial value problem x̨ Õ = Ax̨ ,
x̨(0) =

Ë
1
1

È
, where A =

Ë
1 ≠5
1 ≠3

È
.

I First to find the eigenvalues we solve
--- 1 ≠ ⁄ ≠5

1 ≠3 ≠ ⁄

--- = 0

∆ (1 ≠ ⁄)(≠3 ≠ ⁄) + 5 = 0 or ⁄2 + 2⁄ + 2 = 0 ∆
⁄ = ≠1 ± i .

Next, let’s select the eigenvalue ⁄ = ≠1 + i and find a corresponding
eigenvector: We solve the equation
Ë

2 ≠ i ≠5
1 ≠2 ≠ i

È Ë
v1
v2

È
=

Ë
0
0

È
. BOTH equations ∆ v1 = (2+i)v2 so

Ë
2 + i

1

È

is an eigenvector (setting v2 = 1) corresponding to eigenvalue ⁄ = ≠1 + i .
So a complex valued solution to x̨ Õ = Ax̨ is

e(≠1+i)t
Ë

2 + i
1

È
= e≠t(cos t+i sin t)

Ë
2 + i

1

È
= e≠t

Ë
2 cos t ≠ sin t

cos t

È
+i e≠t

Ë
2 sin t + cos t

sin t

È
.

So the general solution to x̨ Õ = Ax̨ is

x̨(t) = B1e≠t
Ë

2 cos t ≠ sin t
cos t

È
+ B2e≠t

Ë
2 sin t + cos t

sin t

È
(B1, B2 arbitrary constants).
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+ B2e≠t
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È

Next, we use the initial condition x̨(0) =
C

1
1

D

to find B1 and
B2.

We get C
2B1 + B2
B1

D

=
C

1
1

D

∆ B1 = 1 and B2 = ≠1.
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C
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D

≠ e≠t
C

2 sin t + cos t
sin t

D

= e≠t
C

cos t ≠ 3 sin t
cos t ≠ sin t

D

.
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CASE 1: Solving x̨ Õ = Ax̨ , An◊n with n di�erent eigenvalues
CASE 2: Solving x̨ Õ = Ax̨ , An◊n with complex eigenvalues
CASE 3: Solving x̨ Õ = Ax̨ , An◊n with repeated eigenvalues

Òæ EXAMPLE 12 Find the general solution of x̨ Õ = Ax̨ , where

A =

C
1 0 0
2 1 ≠2
3 2 1

D
.

I First to find the eigenvalues we solve
-----

1 ≠ ⁄ 0 0
2 1 ≠ ⁄ ≠2
3 2 1 ≠ ⁄

-----
= 0

∆ (1 ≠ ⁄)[(1 ≠ ⁄)2 + 4] = 0 so ⁄ = 1 or (1 ≠ ⁄)2 = ≠4 ∆
⁄ = 1 ± 2i .

Next, an eigenvector corresponding to eigenvalue ⁄ = 1 is found by
solving
S

U
0 0 0
2 0 ≠2
3 2 0

T

V

S

U
v1
v2
v3

T

V =

S

U
0
0
0

T

V ∆ v3 = v1, v2 = ≠3
2v1 ∆ v̨ =

S

U
2

≠3
2

T

V

is an eigenvector corresponding to eigenvalue ⁄ = 1.
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CASE 1: Solving x̨ Õ = Ax̨ , An◊n with n di�erent eigenvalues
CASE 2: Solving x̨ Õ = Ax̨ , An◊n with complex eigenvalues
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REMINDER: v̨ =

C
2

≠3
2

D
is an eigenvector of A corresponding to eigenvalue ⁄ = 1

Òæ Next we pick eigenvalue 1 + 2i and find a corresponding eigenvector by solving

C
≠2i 0 0

2 ≠2i ≠2
3 2 ≠2i

D C
u1
u2
u3

D
=

C
0
0
0

D
∆ u1 = 0, u3 = ≠u2i .

So, setting u2 = 1, an eigenvector corresponding to eigenvalue ⁄ = 1 + 2i is

ų =

C
0
1

≠i

D
. And so a complex-valued solution to x̨ Õ = Ax̨ is

e(1+2i)t

C
0
1

≠i

D
= et(cos 2t+i sin 2t)

C
0
1

≠i

D
= et

C
0

cos 2t
sin 2t

D
+i et

C
0

sin 2t
≠ cos 2t

D
.

And a general solution to x̨ Õ = Ax̨ is

x̨(t) = B1et

C
2

≠3
2

D
+ B2et

C
0

cos 2t
sin 2t

D
+ B3et

C
0

sin 2t
≠ cos 2t

D
,

where B1, B2, and B3 are arbitrary constants.
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CASE 3: Solving x̨ Õ = Ax̨ , An◊n with repeated eigenvalues

Òæ First, if An◊n still has n linearly independent eigenvectors, then
the approach is exactly as in CASE 1 (see EXAMPLES 5–10).

Òæ EXAMPLE 13 Recall from EXAMPLES 4, 9, and 11 of the
Supplementary Lecture on Eigenvalues/Eigenvectors that the

matrix A =

C
0 0 ≠2
1 2 1
1 0 3

D
has eigenvalues ⁄ = 1, 2, 2, but that the

repeated eigenvalue of 2 had TWO linearly independent
eigenvectors. So that in total A had THREE linearly independent

eigenvectors p̨1 =

C
≠2

1
1

D
, p̨2 =

C
≠1

0
1

D
, and p̨3 =

C
0
1
0

D
respectively.

So a general solution to ˙̨x = Ax̨ is

x̨(t) =

C
x1(t)
x2(t)
x3(t)

D
= B1et
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1

D
+ B2e2t
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≠1

0
1

D
+ B3e2t

C
0
1
0

D
,

where B1, B2, and B3 are arbitrary constants.
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CASE 1: Solving x̨ Õ = Ax̨ , An◊n with n di�erent eigenvalues
CASE 2: Solving x̨ Õ = Ax̨ , An◊n with complex eigenvalues
CASE 3: Solving x̨ Õ = Ax̨ , An◊n with repeated eigenvalues

Òæ So what really concerns us is the case where the multiplicity of a repeated
eigenvalue of A (= the number of times that the eigenvalue is a root of A’s
characteristic polynomial) is greater than the number of linearly independent
eigenvectors we can find for that eigenvalue - see, for example, EXAMPLE 10
of the Supplementary Lecture on Eigenvalues/Eigenvectors.

In this case, we
look for generalised eigenvectors corresponding to that repeated eigenvalue.

I The overall approach is similar to what we do when solving
ax ÕÕ + bx Õ + c = 0 and the characteristic equation ar2 + br + c = 0
has a repeated root.

I E.g. Suppose A has eigenvalue of multiplicity TWO ⁄ with only 1 linearly
independent family of eigenvectors, with v̨ being one of them. So Av̨ = ⁄v̨ . In
the past, we have assumed a solution to x̨ Õ = Ax̨ to be of the form e⁄t v̨ .
Based on what we did for nth order equations whose characteristic equations
had repeated roots, how do you propose we adjust the form of our solution
e⁄t v̨ if ⁄ is an eigenvalue of multiplicity TWO?

ANSWER: let the solution x̨(t) take the form x̨(t) = te⁄t ų, where ų is a
constant vector to be determined.
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constant vector to be determined.

41 / 131



Introduction
Analytical Solutions to Systems of First Order ODEs
Numerical Methods for Systems of First Order ODEs

Geometrical Study of Solutions to Systems of First Order ODEs
Appendix

Finding Eigenvalues and Eigenvectors Using Matlab
CASE 1: Solving x̨ Õ = Ax̨ , An◊n with n di�erent eigenvalues
CASE 2: Solving x̨ Õ = Ax̨ , An◊n with complex eigenvalues
CASE 3: Solving x̨ Õ = Ax̨ , An◊n with repeated eigenvalues

Òæ So what really concerns us is the case where the multiplicity of a repeated
eigenvalue of A (= the number of times that the eigenvalue is a root of A’s
characteristic polynomial) is greater than the number of linearly independent
eigenvectors we can find for that eigenvalue - see, for example, EXAMPLE 10
of the Supplementary Lecture on Eigenvalues/Eigenvectors. In this case, we
look for generalised eigenvectors corresponding to that repeated eigenvalue.

I The overall approach is similar to what we do when solving
ax ÕÕ + bx Õ + c = 0 and the characteristic equation ar2 + br + c = 0
has a repeated root.

I E.g. Suppose A has eigenvalue of multiplicity TWO ⁄ with only 1 linearly
independent family of eigenvectors, with v̨ being one of them. So Av̨ = ⁄v̨ . In
the past, we have assumed a solution to x̨ Õ = Ax̨ to be of the form e⁄t v̨ .
Based on what we did for nth order equations whose characteristic equations
had repeated roots, how do you propose we adjust the form of our solution
e⁄t v̨ if ⁄ is an eigenvalue of multiplicity TWO?

ANSWER: let the solution x̨(t) take the form x̨(t) = te⁄t ų, where ų is a
constant vector to be determined.

41 / 131



Introduction
Analytical Solutions to Systems of First Order ODEs
Numerical Methods for Systems of First Order ODEs

Geometrical Study of Solutions to Systems of First Order ODEs
Appendix

Finding Eigenvalues and Eigenvectors Using Matlab
CASE 1: Solving x̨ Õ = Ax̨ , An◊n with n di�erent eigenvalues
CASE 2: Solving x̨ Õ = Ax̨ , An◊n with complex eigenvalues
CASE 3: Solving x̨ Õ = Ax̨ , An◊n with repeated eigenvalues

Òæ So what really concerns us is the case where the multiplicity of a repeated
eigenvalue of A (= the number of times that the eigenvalue is a root of A’s
characteristic polynomial) is greater than the number of linearly independent
eigenvectors we can find for that eigenvalue - see, for example, EXAMPLE 10
of the Supplementary Lecture on Eigenvalues/Eigenvectors. In this case, we
look for generalised eigenvectors corresponding to that repeated eigenvalue.

I The overall approach is similar to what we do when solving
ax ÕÕ + bx Õ + c = 0 and the characteristic equation ar2 + br + c = 0
has a repeated root.

I E.g. Suppose A has eigenvalue of multiplicity TWO ⁄ with only 1 linearly
independent family of eigenvectors, with v̨ being one of them. So Av̨ = ⁄v̨ .

In
the past, we have assumed a solution to x̨ Õ = Ax̨ to be of the form e⁄t v̨ .
Based on what we did for nth order equations whose characteristic equations
had repeated roots, how do you propose we adjust the form of our solution
e⁄t v̨ if ⁄ is an eigenvalue of multiplicity TWO?

ANSWER: let the solution x̨(t) take the form x̨(t) = te⁄t ų, where ų is a
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of the Supplementary Lecture on Eigenvalues/Eigenvectors. In this case, we
look for generalised eigenvectors corresponding to that repeated eigenvalue.

I The overall approach is similar to what we do when solving
ax ÕÕ + bx Õ + c = 0 and the characteristic equation ar2 + br + c = 0
has a repeated root.

I E.g. Suppose A has eigenvalue of multiplicity TWO ⁄ with only 1 linearly
independent family of eigenvectors, with v̨ being one of them. So Av̨ = ⁄v̨ . In
the past, we have assumed a solution to x̨ Õ = Ax̨ to be of the form e⁄t v̨ .
Based on what we did for nth order equations whose characteristic equations
had repeated roots, how do you propose we adjust the form of our solution
e⁄t v̨ if ⁄ is an eigenvalue of multiplicity TWO?

ANSWER: let the solution x̨(t) take the form x̨(t) = te⁄t ų, where ų is a
constant vector to be determined.
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I x̨(t) = te⁄t ų ∆ x̨ Õ(t) =

e⁄t ų + ⁄te⁄t ų. Substituting this into x̨ Õ = Ax̨, we
get

e⁄t ų + ⁄te⁄t ų = Ate⁄t ų ∆ ųe⁄t + ⁄ųte⁄t ≠ Aųte⁄t = 0̨.

This is only possible for all t if the coe�cients of both e⁄t and te⁄t are zero
vectors. In particular, we must have ų = 0̨, so there is NO non-zero vector
solution (hence no eigenvector) if we assume the solution is of the form
x̨(t) = te⁄t ų.

Òæ So, observing the appearance of the ųe⁄t term when we substituted into the
ODE system, we adjust our assumption by including lower order terms:

Let x̨(t) = te⁄t ų1 + e⁄t ų2 (3)

where ų1 and ų2 are constant vectors to be determined.
x̨ Õ(t) = ⁄te⁄t ų1 + e⁄t(ų1 + ⁄ų2) and substituting into x̨ Õ = Ax̨,

⁄te⁄t ų1+e⁄t(ų1+⁄ų2) = Ate⁄t ų1+Ae⁄t ų2 ∆ te⁄t(⁄ų1 ≠ Aų1)+e⁄t(ų1 + ⁄ų2 ≠ Aų2) = 0̨.

So again, we must have ⁄ų1 ≠ Aų1 = 0̨ AND ų1 + ⁄ų2 ≠ Aų2 = 0̨.
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This is only possible for all t if the coe�cients of both e⁄t and te⁄t are zero
vectors. In particular, we must have ų = 0̨, so there is NO non-zero vector
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Òæ So, observing the appearance of the ųe⁄t term when we substituted into the
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ODE system, we adjust our assumption by including lower order terms:

Let x̨(t) = te⁄t ų1 + e⁄t ų2 (3)
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x̨ Õ(t) = ⁄te⁄t ų1 + e⁄t(ų1 + ⁄ų2) and substituting into x̨ Õ = Ax̨,
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42 / 131



Introduction
Analytical Solutions to Systems of First Order ODEs
Numerical Methods for Systems of First Order ODEs

Geometrical Study of Solutions to Systems of First Order ODEs
Appendix

Finding Eigenvalues and Eigenvectors Using Matlab
CASE 1: Solving x̨ Õ = Ax̨ , An◊n with n di�erent eigenvalues
CASE 2: Solving x̨ Õ = Ax̨ , An◊n with complex eigenvalues
CASE 3: Solving x̨ Õ = Ax̨ , An◊n with repeated eigenvalues
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This is only possible for all t if the coe�cients of both e⁄t and te⁄t are zero
vectors. In particular, we must have ų = 0̨, so there is NO non-zero vector
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CASE 3: Solving x̨ Õ = Ax̨ , An◊n with repeated eigenvalues

REMINDER: ⁄ų1 ≠ Aų1 = 0̨ AND ų1 + ⁄ų2 ≠ Aų2 = 0̨.

Òæ The first equation is, of course, equivalent to Aų1 = ⁄ų1 so that ų1
is simply an eigenvector of A corresponding to eigenvalue ⁄ (so it
would already be known!!!).

Òæ The second equation is equivalent to (A ≠ ⁄I)ų2 = ų1 , and a
solution ų2 is known as a generalised eigenvector of A.

Òæ Returning to Equation (3), a solution to x̨ Õ = Ax̨ is
˛x(t) = te⁄t ų1 + e⁄t ų2, where ų1 is an eigenvector of A

corresponding to eigenvalue ⁄ and ų2 is a GENERALISED
eigenvector of A corresponding to eigenvalue ⁄. It can be shown
that this solution is linearly independent from x̨(t) = e⁄t ų1.

I NOTE 1: that ų2 will typically contain a sum of vectors, one of which will be a
multiple of ų1. We can ignore that multiple of ų1 since the term e⁄t ų1 would
appear elsewhere in a general solution to x̨ Õ = Ax̨.

I NOTE 2: we have only discussed the case in which ⁄ is an eigenvalue of A of
multiplicity TWO. Other cases are “fairly easily” generalisable from this and will
be discussed briefly after the next example.
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Òæ The first equation is, of course, equivalent to Aų1 = ⁄ų1 so that ų1
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is simply an eigenvector of A corresponding to eigenvalue ⁄ (so it
would already be known!!!).

Òæ The second equation is equivalent to (A ≠ ⁄I)ų2 = ų1 , and a
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is simply an eigenvector of A corresponding to eigenvalue ⁄ (so it
would already be known!!!).

Òæ The second equation is equivalent to (A ≠ ⁄I)ų2 = ų1 , and a
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CASE 3: Solving x̨ Õ = Ax̨ , An◊n with repeated eigenvalues

Òæ EXAMPLE 14 (a) (Based on EXAMPLE 10 of the Supplementary Lecture on Eigenvalues/

Eigenvectors): Find a general solution of x̨ Õ = Ax̨ where A =

C
3 1 0
0 3 0
0 0 4

D
.

By solving det(A ≠ ⁄I) = (3 ≠ ⁄)2(4 ≠ ⁄) = 0, we get eigenvalues
⁄1 = 3 (multiplicity TWO) and ⁄2 = 4 . We have already seen in the

Supplementary Lecture on Eigenvalues/Eigenvectors EXAMPLE 10 that there is only
one family of linearly independent eigenvectors corresponding to ⁄1 = 3, of which

ų1 =

5
1
0
0

6
is a representative. So we seek a generalised eigenvector by assuming a

solution of the form x̨(t) = te3t ų1 + e3t ų2 and, upon substitution into x̨ Õ = Ax̨
solving the resulting new equation

(A ≠ 3I)ų2 = ų1 ∆

5
0 1 0
0 0 0
0 0 1

65
u21
u22
u23

6
=

5
1
0
0

6
.

So u23 = 0, u22 = 1, and u21 can take on any (non-zero) value, so that a typical generalised eigenvector is of the

form u21

5
1
0
0

6
+

5
0
1
0

6
. Hence, setting u21 = 1, a generalised eigenvector is

5
1
0
0

6
+

5
0
1
0

6
.
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REMINDER: Generalised eigenvector :

5
1
0
0

6
+

5
0
1
0

6

Òæ Because the first vector in this sum is simply the eigenvector ų1, we ignore it

and take the generalised eigenvector to be simply
5

0
1
0

6
.

I ASIDE: Alternatively, we could have simply taken u21 = 0 and gotten the

generalised eigenvector,
5

0
1
0

6
, directly.

 So from Equation (3) a solution to x̨ Õ = Ax̨ is x̨(t) = te3t

C
1
0
0

D
+ e3t

C
0
1
0

D

Next to find an eigenvector corresponding to single eigenvalue ⁄ = 4 we solve
5

≠1 1 0
0 ≠1 0
0 0 0

65
v1
v2
v3

6
=

5
0
0
0

6
∆ . . . ∆ v̨ =

5
0
0
1

6

is an eigenvector corresponding to eigenvalue ⁄2 = 4. So a general solution to x̨ Õ = Ax̨ is

x̨(t) = B1e4t

C
0
0
1

D
+ B2e3t

C
1
0
0

D
+ B3

A
te3t

C
1
0
0

D
+ e3t

C
0
1
0

DB
.
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CASE 3: Solving x̨ Õ = Ax̨ , An◊n with repeated eigenvalues

Òæ EXAMPLE 14 (b) : Find a general solution of x̨ Õ = Ax̨ where A =
Ë

3 ≠1
1 1

È
.

We first find the eigenvalues of A by solving det(A ≠ ⁄I) = 0, so
(3 ≠ ⁄)(1 ≠ ⁄) + 1 = 0 ∆ ⁄2 ≠ 2⁄ + 4 = 0 ∆ (⁄ ≠ 2)2 = 0, so that ⁄ = 2 is the
(repeated) eigenvalue.
To find one or more corresponding linearly independent eigenvectors, solve
(A ≠ 2I)x̨ = 0̨ :

Ë
1 ≠1
1 ≠1

È 1
x1
x2

2
=

1
0
0

2
∆ x1 = x2 so

1
1
1

2
or any

(non-zero) scalar multiple thereof is the only (family of) linearly independent
eigenvector(s) associated directly with the eigenvalue ⁄ = 2.
We therefore need to find a generalised eigenvector by solving

Ë
1 ≠1
1 ≠1

È1
u1
u2

2
=

1
1
1

2
∆ u1 ≠ u2 = 1 or u1 = 1 + u2.

So any vector of the form
1

u1
u2

2
=

1
1 + u2

u2

2
=

1
1
0

2
+ u2

1
1
1

2
is a

generalised eigenvector of A. Specifically, since the second vector already appears in
the linear span of the first eigenvector, we take just

1
1
0

2
as the generalised

eigenvector (i.e, we set u2 = 0). And the general solution to the system of ODEs is
1

x1(t)
x2(t)

2
= C1e2t

1
1
1

2
+ C2e2t

1
1
0

2
+ C2te2t

1
1
1

2
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eigenvector(s) associated directly with the eigenvalue ⁄ = 2.
We therefore need to find a generalised eigenvector by solving

Ë
1 ≠1
1 ≠1

È1
u1
u2

2
=

1
1
1

2
∆ u1 ≠ u2 = 1 or u1 = 1 + u2.

So any vector of the form
1

u1
u2

2
=

1
1 + u2

u2

2
=

1
1
0

2
+ u2

1
1
1

2
is a

generalised eigenvector of A. Specifically, since the second vector already appears in
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1
1
0

2
as the generalised

eigenvector (i.e, we set u2 = 0).
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1

x1(t)
x2(t)

2
= C1e2t

1
1
1

2
+ C2e2t

1
1
0

2
+ C2te2t

1
1
1

2
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CASE 1: Solving x̨ Õ = Ax̨ , An◊n with n di�erent eigenvalues
CASE 2: Solving x̨ Õ = Ax̨ , An◊n with complex eigenvalues
CASE 3: Solving x̨ Õ = Ax̨ , An◊n with repeated eigenvalues

I The techniques described generalise in a fairly easy way to situations in which
the multiplicity of the eigenvalue is greater than 2.

I For example if A has an eigenvalue ⁄ of multiplicity THREE with only TWO
linearly independent eigenvectors v̨1 and v̨2 corresponding to that eigenvalue,
then an analysis similar to the one used to come up with Equation (3) would
again lead to the conclusion that a solution of the form
x̨(t) = te⁄t v̨ + e⁄t ų ∆ (A ≠ ⁄I)v̨ = 0̨ and (A ≠ ⁄I)ų = v̨ . NOTING that the
most general solution to the first equation is v̨ = c1v̨1 + c2v̨2, it will often be
necessary to assign specific values to c1 and c2 to ensure that (A ≠ ⁄I)ų = v̨
has a solution, ų.

I Likewise, if A has an eigenvalue of multiplicity 3 but only one linearly
independent corresponding eigenvector v̨ , then assume x̨(t) = te⁄t ų1 + e⁄t ų2
and follow the analysis leading up to Equation (3). THEN to get a third linearly
independent solution, assume x̨(t) = 1

2 t2e⁄t w̨1 + te⁄t w̨2 + e⁄t w̨3 and repeat
the analysis leading up to Equation (3) to conclude

(A ≠ ⁄I)w̨1 = 0, (A ≠ ⁄I)w̨2 = w̨1, and (A ≠ ⁄I)w̨3 = w̨2 .

I SEE a standard introductory ODE book, such as the one by Boyce and
DiPrima, for more on this topic.
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I Likewise, if A has an eigenvalue of multiplicity 3 but only one linearly
independent corresponding eigenvector v̨ , then assume x̨(t) = te⁄t ų1 + e⁄t ų2
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CASE 1: Solving x̨ Õ = Ax̨ , An◊n with n di�erent eigenvalues
CASE 2: Solving x̨ Õ = Ax̨ , An◊n with complex eigenvalues
CASE 3: Solving x̨ Õ = Ax̨ , An◊n with repeated eigenvalues

Inhomogeneous Systems x̨ Õ = Ax̨ + g̨(t), An◊n

Òæ There are several techniques for solving inhomogeneous
systems, two of which are discussed in APPENDIX B.

Òæ This is material is interesting but is not absolutely
necessary for what we will be doing here which is
classifying the behaviour of solutions to systems of ODEs;
for that, it is enough to consider the solution of
homogeneous linear (constant matrix coe�cient) systems
of the form

dx̨
dt = Ax̨ , An◊n.

Òæ Note examples are numbered in Appendix B and the rest of this document as if

Appendix B were inserted here.
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Euler’s Method for Systems of First Order ODEs
Other Numerical Methods for Systems of First Order ODEs
Heun’s Method
4th Order Runge-Kutta (RK4)

Numerical Methods for Systems of First Order ODEs
Notation and Conventions

Òæ As always, NOTATION is going to be very important in what
follows. PAY CLOSE ATTENTION TO IT!

Òæ The use of vector notation and vector functions and
transformations will make very easy the transition from studying
and approximating the solution to a single first order ODE (and
IVP) to studying and approximating the solution to a system of first
order ODEs (and IVPs).

Òæ In what follows, vectors will be denoted by boldface, e.g. v , or by
a vector symbol ˛, such as v̨ .

º Assume all vectors are column vectors unless otherwise stated.
º A function whose output is a vector will follow the above

convention of having its name in boldface or with a vector symbol:
eg f̨ (t, y) =

5
t2y

sin(t + 2y)

6
or g(t) =

5
t2 + 2t ≠ 1
sin(t)e≠t

6
.
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Òæ We di�erentiate (or integrate) vector functions by di�erentiating (or
integrating) each term individually:

r̨(t) =

S

U
t3 ≠ 4t

sin t
e2t

T

V ∆ r̨ Õ(t) or

dr̨
dt or ṙ(t) =

S

U
3t2 ≠ 4

cos t
2e2t

T

V .

Òæ It is often convenient to name the component functions of a vector
function or transformation with the same name as the vector
function or transformation, but with subscripts to indicate their
position in the vector. For example

y(t) =

Q

a
y1(t)
y2(t)
y3(t)

R

b
or f(t, y1, y2, y3) =

Q

a
f1(t, y1, y2, y3)
f2(t, y1, y2, y3)
f3(t, y1, y2, y3)

R

b .

This convention will be useful to adopt when we write general
programs (Euler’s, Heun’s, RK(4), etc.) to solve systems of n first
order ODEs.
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programs (Euler’s, Heun’s, RK(4), etc.) to solve systems of n first
order ODEs.
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Òæ In light of the notation/conventions just established, a system of
IVPs such as dy1

dt
= f1(t, y1, y2, y3)

dy2
dt

= f2(t, y1, y2, y3)

dy3
dt

= f3(t, y1, y2, y3)

with t œ [to, T ] and y1(t0) = y1,0, y2(t0) = y2,0, and
y3(t0) = y3,0, can be written in vector form as

dy
dt

or ẏ(t) or y̨ Õ(t) = f̨ (t, y̨) or f̨ (t, y1, y2, y3)

with t œ [to, T ] and y̨(t0) = y̨0 =

Q

a
y1,0
y2,0
y3,0

R

b, where

y̨(t) =

A
y1(t)
y2(t)
y3(t)

B
and f̨ (t, y̨) =

A
f1(t, y1, y2, y3)
f2(t, y1, y2, y3)
f3(t, y1, y2, y3)

B
.
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General First Order System of n IVPs

Òæ In discussing numerical methods for systems of ODEs, we will focus on the
general first order system of n IVPs:

Òæ Find y̨(t) such that ΩÚ

dy̨
dt

= f̨ (t, y̨), ’ t œ [t0, T ]

where y̨(t0) = y̨0 is a given initial value of the unknown vector function, y̨(t),

and f̨ (t, y̨) = f̨ (t, y̨(t)) is a given vector transformation.

Here y̨(t) =

Q

a
y1(t)
y2(t)

...
yn(t)

R

b , y̨0 =

Q

a
y1(t0)
y2(t0)

...
yn(t0)

R

b , and f̨ (t, y̨) = f̨ (t, y1, y2, . . . , yn) =

Q

a
f1(t, y1, y2, . . . , yn)
f2(t, y1, y2, . . . , yn)

...
fn(t, y1, y2, . . . , yn)

R

b .

I NOTE the similarity to the single first order IVP.
I Often, t̨0 will be 0̨, and we will focus on the n = 2 and n = 3 cases.
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General First Order System of n IVPs - Autonomous Systems
Òæ Since many of the systems we look at will also be autonomous, here is the

general first order system of n IVPs for that special case:

Òæ Find y̨(t) such that ΩÚ

dy̨
dt

= f (y̨), ’ t œ [t0, T ]

where y̨(t0) = y̨0 is a given initial value of the unknown vector function, y̨(t),

and f̨ (̨y) = f (̨y(t)) is a given vector transformation.

Here y̨(t) =

Q

a
y1(t)
y2(t)

...
yn(t)

R

b , y̨0 =

Q

a
y1(t0)
y2(t0)

...
yn(t0)

R

b , and f̨ (̨y) = f̨ (y1, y2, . . . , yn) =

Q

a
f1(y1, y2, . . . , yn)
f2(y1, y2, . . . , yn)

...
fn(y1, y2, . . . , yn)

R

b .

I NOTE the similarity to the single first order autonomous IVP BUT also NOTE
that as for single ODEs we will solve these systems using programs written for
the general case on the preceding slide.
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I NOTE the similarity to the single first order autonomous IVP BUT also NOTE
that as for single ODEs we will solve these systems using programs written for
the general case on the preceding slide.
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Euler’s Method for Systems of First Order ODEs

The main reason why we made such a fuss about expressing
all of our IVPs in vector form is that the equations for the
di�erent approximation methods (giving the formula for
Yi+1) remain the same, with

• operations like +, ≠ BECOMING vector +, vector ≠
where appropriate,

• multiplication by h BECOMING scalar multiplication by
h.

I will show next why this is true for Euler’s method by deriving
the method for the special case of 2 ODEs, using Taylor series
of the two solution functions, similar to what we did in
Lecture 2 when deriving Euler’s method for single ODEs.
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I Suppose we want to use Euler’s method to approximate the solutions to
dy1
dt

= f1(t1, y1, y2)

dy2
dt
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1(ti ) + O(h2) ¥ y1(ti ) + hf1(ti , y1(ti ), y2(ti ))

y2(ti+1) = y2(ti + h) = y2(ti ) + hy Õ
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Òæ If we replace the functions by their approximations, we get the systems version
of Euler’s method (using SUPERSCRIPTS to indicate the timestep (iteration)
number and SUBSCRIPTS to indicate the function number):

Y (i+1)
1 = Y (i)

1 + hf1(ti , Y (i)
1 , Y (i)

2 )

Y (i+1)
2 = Y (i)

2 + hf2(ti , Y (i)
1 , Y (i)

2 )

or Y̨ (i+1) = Y̨ (i) + hf̨ (ti , Y (i)
1 , Y (i)

2 )

where Y̨ =
Ë

Y1
Y2

È
and f̨ (t, Y1, Y2) =

Ë
f1(t, Y1, Y2)
f2(t, Y1, Y2)

È
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Euler’s Method for Systems

Euler’s method for approximating the solution to the general first order
system of n IVPs, dy̨

dt = f̨ (t, y̨), ’ t œ [t0, T ], y̨(t0) = y̨0:

Euler’s Method for Systems

Y̨0 = y̨(t0) THEN

Y̨ (i+1) = Y̨ (i) + hf̨ (ti , Y̨ (i)) for i = 0, 1, 2 . . . , N ≠ 1.
where

Y̨ =

Q

ccca

Y1
Y2
...

Yn

R

dddb
and f̨ (t, Y̨ ) = f̨ (t, Y1, Y2, . . . , Yn) =

S

WWWU

f1(t, Y1, Y2, . . . , Yn)
f2(t, Y1, Y2, . . . , Yn)

...
fn(t, Y1, Y2, . . . , Yn)

T

XXXV

and Y (j)
i is the Euler approximation to yi(tj) (for i = 1, 2, . . . , n and

j = 0, 1, 2, . . . , N).
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Reminder: Y̨ (i+1) = Y̨ (i) + hf̨ (ti , Y̨ (i)) for i = 0, 1, 2 . . . , N ≠ 1

In summary, Euler’s method for a first order system of
ODEs simply consists of applying the scalar Euler’s
method to a vector of di�erential equations one
component at a time.

I I include in the following pages a sample Euler’s method
program for a system of two di�erential equations.
Modifying it for a system of 3 or more equations and for
Heun’s method and the Runge-Kutta (fourth order)
methods is relatively straightforward. NOTE a somewhat
more sophisticated version will be also provided on the
course Moodle page.
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method to a vector of di�erential equations one
component at a time.
I I include in the following pages a sample Euler’s method

program for a system of two di�erential equations.
Modifying it for a system of 3 or more equations and for
Heun’s method and the Runge-Kutta (fourth order)
methods is relatively straightforward. NOTE a somewhat
more sophisticated version will be also provided on the
course Moodle page.
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clear
clf

f = @(t,y) [-4*y(1)-2*y(2) + cos(t) + 4*sin(t);
3*y(1)+y(2)-3*sin(t)];

% Here we give the exact solution if known. If not known, set to the
% this to return an appropriately-sized vector of zeros and ignore all
% subsequent references to the exact solution in this program
exact = @(t) [2*exp(-t) - 2*exp(-2*t) + sin(t);

-3*exp(-t) + 2*exp(-2*t)];

n = input(’Enter the number of equations in your system of ODEs ’);

h=0.1;
t0 = 0; tN = 2;
y0 = [0; -1];

if length(y0) ˜= n
disp(’Error, you entered an incorrect number of equations. Try again ’)
return;

end
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t = [t0:h:tN];
sizet = length(t);

% y(i,j) is the approximation to y i(t j)
y = zeros(n,sizet);
yexact = zeros(n, sizet);
for (k = 1:n)

y(k,1) = y0(k);
end

% Main Euler’s method loop
for k = 2:sizet

y(:,k) = y(:,k-1) + h*f(t(k-1), y(:,k-1));
end

for(k = 1:sizet)
yexact(:,k) = exact(t(k));

end

for (mm = 1:n)
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fprintf(’\nPRINTING INFORMATION FOR FUNCTION %d\n\n’,mm);
fprintf(’ i TIME Yi (APPROX) y(ti) (EXACT) ABS. ERROR\n’)

for k = 1:sizet
fprintf(’%3d %8f %10f %10f %10f\n’,k-1,t(k),y(mm,k),yexact(mm,k), abs(y(mm,k)-yexact(mm,k)))

end
end

disp(’’); % blank line

plotsoln=input(’Hit return for graphs of solutions versus time ’)
if isempty(plotsoln)

set(gca,’fontsize’,14)
for k = 1:n

plot(t,y(k,:),’linewidth’,2)
xlabel(’t’)
fprintf(’\nPLOTTING INFORMATION FOR FUNCTION %d\n\n’,k);
if k < n

disp(’Hit any key to see the next graph ’);
pause

end
end

end
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disp(’ ’) % blank line

if n == 2 % phase plane plot
plotsoln=input(’Hit return for phase plane plot ’)
if isempty(plotsoln)

plot(y(1,:), y(2,:),’-r’);
xlabel(’y1’)
ylabel(’y2’)

end
end
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Òæ EXAMPLE 17 Use the systems Euler’s method with h = 0.1 to solve
dy1
dt

= ≠4y1 ≠ 2y2 + cos(t) + 4 sin(t) (EXACT SOLUTION)

dy2
dt

= 3y1 + y2 ≠ 3 sin(t) y1(t) = 2e≠t ≠ 2e≠2t + sin(t)

t œ [0, 2], y1(0) = 0, y2(0) = ≠1 y2(t) = ≠3e≠t + 2e≠2t

Òæ In vector form, this is
dy̨
dt

= f̨ (t, y1, y2), t œ [0, 2], y̨(0) =
1

0
≠1

2
, where

y̨ =
1

y1(t)
y2(t)

2
and f̨ (t, y1, y2) =

Ë ≠4y1 ≠ 2y2 + cos(t) + 4 sin(t)
3y1 + y2 ≠ 3 sin(t)

È

I You will be expected to know how to change easily between the vector and
non-vector form of such systems of ODEs.
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Reminder: solving dy̨
dt = f̨ (t, y1, y2), t œ [0, 2], y̨(0) =

1
0

≠1

2
with

y̨ =
1

y1(t)
y2(t)

2
and f̨ (t, y1, y2) =

Ë
≠4y1 ≠ 2y2 + cos(t) + 4 sin(t)

3y1 + y2 ≠ 3 sin(t)

È

y1(t) and y2(t)- Exact Solutions and Euler’s Method Approximations
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t
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Ë
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È

y1(t) and y2(t)- Error in Euler’s Method Approximations
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Y1

i TIME Yi (APPROX) y(ti ) (EXACT) ABS. ERROR
0 0.000000 0.000000 0.000000 0.000000
1 0.100000 0.300000 0.272047 0.027953
2 0.200000 0.539434 0.495491 0.043943
3 0.300000 0.731125 0.679533 0.051591
4 0.400000 0.884960 0.831401 0.053559
5 0.500000 1.008510 0.956728 0.051782

...
16 1.600000 1.314846 1.321842 0.006996
17 1.700000 1.279670 1.290285 0.010615
18 1.800000 1.235906 1.249798 0.013892
19 1.900000 1.183836 1.200696 0.016860
20 2.000000 1.123791 1.143337 0.019546

Y2

i TIME Yi (APPROX) y(ti ) (EXACT) ABS. ERROR
0 0.000000 ≠1.000000 ≠1.000000 0.000000
1 0.100000 ≠1.100000 ≠1.077051 0.022949
2 0.200000 ≠1.149950 ≠1.115552 0.034398
3 0.300000 ≠1.162716 ≠1.124831 0.037884
4 0.400000 ≠1.148306 ≠1.112302 0.036004
5 0.500000 ≠1.114474 ≠1.083833 0.030641

...
16 1.600000 ≠0.469265 ≠0.524165 0.054900
17 1.700000 ≠0.421610 ≠0.481304 0.059694
18 1.800000 ≠0.377370 ≠0.441249 0.063880
19 1.900000 ≠0.336489 ≠0.403964 0.067475
20 2.000000 ≠0.298877 ≠0.369375 0.070497
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Òæ EXAMPLE 18 Use the systems Euler’s method to solve x ÕÕÕ ≠ x Õ = t, t œ [0, 4],
x(0) = 6, x Õ(0) = ≠5, x ÕÕ(0) = 0. (EXACT SOLUTION,
x(t) = 5 ≠ 2et + 3e≠t ≠

1
2

t2).

º ANSWER First we convert it to a system:
Let y1 = x , y2 = x Õ, y3 = x ÕÕ ∆

y Õ
1 = y2

y Õ
2 = y3

y Õ
3 = y2 + t.

Meanwhile, the initial conditions become

y̨(0) =

C
y1(0)
y2(0)
y3(0)

D
=

C
6

≠5
0

D
.

(EXACT SOLUTION

y1(t) = 5 ≠ 2et + 3e≠t ≠ 1
2

t2, y2(t) = ≠ 2et ≠ 3e≠t ≠ t, y3(t) = ≠ 2et + 3e≠t ≠ 1).
I We now need only make minor modifications to the earlier Euler’s method

program for a system of 2 equations to get it to work for 3 equations. The
results are summarised on the following pages, first for h = 0.1 then for
h = 0.01.
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y1(t), y2(t), and y3(t) - Exact Solutions and Euler’s Method Approximations with h = 0.1
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Y1

i TIME Yi (APPROX) y(ti ) (EXACT) ABS. ERROR
0 0.000000 6.000000 6.000000 0.000000
1 0.100000 5.500000 5.499170 0.000830
2 0.200000 5.000000 4.993387 0.006613

...
38 3.800000 ≠76.783943 ≠91.555257 14.771314
39 3.900000 ≠84.650286 ≠101.349172 16.698887
40 4.000000 ≠93.274168 ≠112.141353 18.867185

Y2

i TIME Yi (APPROX) y(ti ) (EXACT) ABS. ERROR
0 0.000000 ≠5.000000 ≠5.000000 0.000000
1 0.100000 ≠5.000000 ≠5.024854 0.024854
2 0.200000 ≠5.050000 ≠5.098998 0.048998

...
38 3.800000 ≠78.663431 ≠93.269481 14.606050
39 3.900000 ≠86.238825 ≠102.765624 16.526799
40 4.000000 ≠94.562854 ≠113.251247 18.688393

Y3

i TIME Yi (APPROX) y(ti ) (EXACT) ABS. ERROR
0 0.000000 0.000000 0.000000 0.000000
1 0.100000 ≠0.500000 ≠0.495830 0.004170
2 0.200000 ≠0.990000 ≠0.986613 0.003387

...
38 3.800000 ≠75.753943 ≠90.335257 14.581314
39 3.900000 ≠83.240286 ≠99.744172 16.503887
40 4.000000 ≠91.474168 ≠110.141353 18.667185
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y1(t), y2(t), and y3(t) - Exact Solutions and Euler’s Method Approximations with h = 0.01
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Y1

i TIME Yi (APPROX) y(ti ) (EXACT) ABS. ERROR
0 0.000000 6.000000 6.000000 0.000000
1 0.010000 5.950000 5.949999 0.000001
2 0.020000 5.900000 5.899993 0.000007

...
398 3.980000 ≠107.784316 ≠109.898212 2.113895
399 3.990000 ≠108.874055 ≠111.014330 2.140274
400 4.000000 ≠109.974383 ≠112.141353 2.166970

Y2

i TIME Yi (APPROX) y(ti ) (EXACT) ABS. ERROR
0 0.000000 ≠5.000000 ≠5.000000 0.000000
1 0.010000 ≠5.000000 ≠5.000250 0.000250
2 0.020000 ≠5.000500 ≠5.000999 0.000499

...
398 3.980000 ≠108.973906 ≠111.070125 2.096219
399 3.990000 ≠110.032747 ≠112.155278 2.122531
400 4.000000 ≠111.102086 ≠113.251247 2.149161

Y3

i TIME Yi (APPROX) y(ti ) (EXACT) ABS. ERROR
0 0.000000 0.000000 0.000000 0.000000
1 0.010000 ≠0.050000 ≠0.049951 0.000049
2 0.020000 ≠0.099900 ≠0.099807 0.000093

...
398 3.980000 ≠105.884016 ≠107.978012 2.093995
399 3.990000 ≠106.933955 ≠109.054280 2.120324
400 4.000000 ≠107.994383 ≠110.141353 2.146970
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Other Numerical Methods for Systems of First Order ODEs

Òæ The relatively large errors in EXAMPLE 18 with stepsize h = 0.1
are a good reason why we move on now to other (higher order)
numerical methods for systems of first order IVPs.

Òæ As mentioned earlier, the equations for the systems version of the
di�erent numerical methods remain the same as their scalar
counterparts when written in vector notation (with the appropriate
vectorised interpretation of +, ≠ and multiplication by h), and
applying a numerical IVP method to a system of ODEs simply
consists of applying the scalar form of that method to a vector of
di�erential equations one component at a time.

I In these notes, we will only look at systems versions of Heun’s
method and the 4th order Runge-Kutta method.
(For systems versions of other methods, such as TS(2) and AB(2), you can
consult the MATH1106 Lecture Notes [contact me if you do not have access to
those notes and wish to see them] or books on numerical solutions to ODEs).
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di�erential equations one component at a time.

I In these notes, we will only look at systems versions of Heun’s
method and the 4th order Runge-Kutta method.
(For systems versions of other methods, such as TS(2) and AB(2), you can
consult the MATH1106 Lecture Notes [contact me if you do not have access to
those notes and wish to see them] or books on numerical solutions to ODEs).
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Other Numerical Methods for Systems of First Order ODEs
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Òæ As mentioned earlier, the equations for the systems version of the
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counterparts when written in vector notation (with the appropriate
vectorised interpretation of +, ≠ and multiplication by h), and
applying a numerical IVP method to a system of ODEs simply
consists of applying the scalar form of that method to a vector of
di�erential equations one component at a time.

I In these notes, we will only look at systems versions of Heun’s
method and the 4th order Runge-Kutta method.
(For systems versions of other methods, such as TS(2) and AB(2), you can
consult the MATH1106 Lecture Notes [contact me if you do not have access to
those notes and wish to see them] or books on numerical solutions to ODEs).
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Heun’s Method

Òæ In summary, Heun’s method for a first order system
of ODEs simply consists of applying the scalar
Heun’s method to a vector of di�erential equations
one component at a time.

Òæ The TWO-STEP (see Lecture 2) version of the method
is summarised on the following page for a system of n
first order IVPs.
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Heun’s Method for Systems

Heun’s method for approximating the solution to the general first order system of n

IVPs,
dy̨
dt

= f̨ (t, y̨), ’ t œ [t0, T ], y̨(t0) = y̨0:

Heuns’s Method for Systems
≠æY 0 = y̨(t0) THEN

≠≠≠≠æYtemp(i+1) = ≠æY (i) + hf̨ (ti ,
≠æY (i)) AND

≠æY (i+1) = ≠æY (i) + h
2

Ë
f̨ (ti ,

≠æY (i)) + f (ti+1,
≠≠≠≠æYtemp(i+1)

È
for i = 0, 1, 2 . . . , N ≠ 1.

where

≠æY =

Q

ca

Y1
Y2
...

Yn

R

db and f̨ (t,
≠æY ) = f̨ (t, Y1, Y2, . . . , Yn) =

S

WU

f1(t, Y1, Y2, . . . , Yn)
f2(t, Y1, Y2, . . . , Yn)

...
fn(t, Y1, Y2, . . . , Yn)

T

XV

and Y (j)
i is the Heun approximation to yi (tj ) (for i = 1, 2, . . . , n and

j = 0, 1, 2, . . . , N).
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XV
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Òæ EXAMPLE 19 - Redo EXAMPLE 17 using Heun’s method: use the
systems Heun’s method with h = 0.1 to solve

dy1
dt

= ≠4y1 ≠ 2y2 + cos(t) + 4 sin(t) (EXACT SOLUTION)

dy2
dt

= 3y1 + y2 ≠ 3 sin(t) y1(t) = 2e≠t ≠ 2e≠2t + sin(t)

t œ [0, 2], y1(0) = 0, y2(0) = ≠1 y2(t) = ≠3e≠t + 2e≠2t

Òæ Recall that in vector form, this is
dy̨
dt

= f̨ (t, y1, y2), t œ [0, 2], y̨(0) =
3

0
≠1

4
, where

y̨ =
1

y1(t)
y2(t)

2
and f̨ (t, y1, y2) =

Ë ≠4y1 ≠ 2y2 + cos(t) + 4 sin(t)
3y1 + y2 ≠ 3 sin(t)

È
.
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Reminder: solving dy̨
dt = f̨ (t, y1, y2), t œ [0, 2], y̨(0) =

1
0

≠1

2
with

y̨ =
1

y1(t)
y2(t)

2
and f̨ (t, y1, y2) =

Ë
≠4y1 ≠ 2y2 + cos(t) + 4 sin(t)

3y1 + y2 ≠ 3 sin(t)

È

y1(t) and y2(t)- Exact Solutions and Heun’s Method Approximations
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Reminder: solving dy̨
dt = f̨ (t, y1, y2), t œ [0, 2], y̨(0) =

1
0

≠1

2
with

y̨ =
1

y1(t)
y2(t)

2
and f̨ (t, y1, y2) =

Ë
≠4y1 ≠ 2y2 + cos(t) + 4 sin(t)

3y1 + y2 ≠ 3 sin(t)

È

y1(t) and y2(t)- Error in Heun’s Method Approximations
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Y1

i TIME Yi (APPROX) y(ti ) (EXACT) ABS. ERROR Euler’s Error
0 0.000000 0.000000 0.000000 0.000000 0.000000
1 0.100000 0.269717 0.272047 0.002330 0.027953
2 0.200000 0.491624 0.495491 0.003867 0.043943
3 0.300000 0.674699 0.679533 0.004834 0.051591
4 0.400000 0.826001 0.831401 0.005400 0.053559
5 0.500000 0.951041 0.956728 0.005687 0.051782

...
16 1.600000 1.317525 1.321842 0.004318 0.006996
17 1.700000 1.286144 1.290285 0.004141 0.010615
18 1.800000 1.245840 1.249798 0.003958 0.013892
19 1.900000 1.196929 1.200696 0.003766 0.016860
20 2.000000 1.139774 1.143337 0.003563 0.019546

Y2

i TIME Yi (APPROX) y(ti ) (EXACT) ABS. ERROR Euler’s Error
0 0.000000 ≠1.000000 ≠1.000000 0.000000 0.000000
1 0.100000 ≠1.074975 ≠1.077051 0.002076 0.022949
2 0.200000 ≠1.112178 ≠1.115552 0.003374 0.034398
3 0.300000 ≠1.120715 ≠1.124831 0.004117 0.037884
4 0.400000 ≠1.107832 ≠1.112302 0.004470 0.036004
5 0.500000 ≠1.079276 ≠1.083833 0.004557 0.030641

...
16 1.600000 ≠0.522366 ≠0.524165 0.001799 0.054900
17 1.700000 ≠0.479718 ≠0.481304 0.001586 0.059694
18 1.800000 ≠0.439865 ≠0.441249 0.001385 0.063880
19 1.900000 ≠0.402772 ≠0.403964 0.001192 0.067475
20 2.000000 ≠0.368369 ≠0.369375 0.001006 0.070497
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RK4 Method

Òæ In summary, the RK4 method for a first order
system of ODEs simply consists of applying the
scalar RK4 method to a vector of di�erential
equations one component at a time.

Òæ You should try to implement this for two equations by
modifying the earlier Euler’s or Heun’s method program;
this is easier if you write it out in vector form and then
think of how to update the components of those vectors.
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RK4 Method for Systems
≠æY 0 = y̨(t0) THEN

k̨1 = hf̨ (ti ,
≠æY (i))

k̨2 = hf (ti + 1
2 h,

≠æY (i) + 1
2 k̨1)

k̨3 = hf (ti + 1
2 h,

≠æY (i) + 1
2 k̨2)

k̨4 = hf (ti + h,
≠æY (i) + k̨3)

AND
≠æY (i+1) = ≠æY (i) + 1

6 k̨1 + 1
3 k̨2 + 1

3 k̨3 + 1
6 k̨4

for i = 0, 1, 2 . . . , N ≠ 1

where

≠æY =

Q

ca

Y1
Y2
...

Yn

R

db and f̨ (t,
≠æY ) = f̨ (t, Y1, Y2, . . . , Yn) =

S

WU

f1(t, Y1, Y2, . . . , Yn)
f2(t, Y1, Y2, . . . , Yn)

...
fn(t, Y1, Y2, . . . , Yn)

T

XV

and Y (j)
i is the RK4 approximation to yi (tj ) (for i = 1, 2, . . . , n and j = 0, 1, 2, . . . , N).
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Òæ EXAMPLE 20 - Redo EXAMPLES 17 & 19 using the RK4
method: use the systems RK4 method with h = 0.1 to solve

dy1
dt

= ≠4y1 ≠ 2y2 + cos(t) + 4 sin(t) (EXACT SOLUTION)

dy2
dt

= 3y1 + y2 ≠ 3 sin(t) y1(t) = 2e≠t ≠ 2e≠2t + sin(t)

t œ [0, 2], y1(0) = 0, y2(0) = ≠1 y2(t) = ≠3e≠t + 2e≠2t

Òæ Recall that in vector form, this is
dy̨
dt

= f̨ (t, y1, y2), t œ [0, 2], y̨(0) =
3

0
≠1

4
, where

y̨ =
1

y1(t)
y2(t)

2
and f̨ (t, y1, y2) =

Ë ≠4y1 ≠ 2y2 + cos(t) + 4 sin(t)
3y1 + y2 ≠ 3 sin(t)

È
.
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3
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4
, where
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È
.
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Reminder: solving dy̨
dt = f̨ (t, y1, y2), t œ [0, 2], y̨(0) =

1
0

≠1

2
with

y̨ =
1

y1(t)
y2(t)

2
and f̨ (t, y1, y2) =

Ë
≠4y1 ≠ 2y2 + cos(t) + 4 sin(t)

3y1 + y2 ≠ 3 sin(t)

È

y1(t) and y2(t)- Exact Solutions and RK4 Method Approximations

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2

t

y1

y1 exact

y2

y2 exact

80 / 131



Introduction
Analytical Solutions to Systems of First Order ODEs
Numerical Methods for Systems of First Order ODEs

Geometrical Study of Solutions to Systems of First Order ODEs
Appendix

Euler’s Method for Systems of First Order ODEs
Other Numerical Methods for Systems of First Order ODEs
Heun’s Method
4th Order Runge-Kutta (RK4)

Reminder: solving dy̨
dt = f̨ (t, y1, y2), t œ [0, 2], y̨(0) =

1
0

≠1

2
with

y̨ =
1

y1(t)
y2(t)

2
and f̨ (t, y1, y2) =

Ë
≠4y1 ≠ 2y2 + cos(t) + 4 sin(t)

3y1 + y2 ≠ 3 sin(t)

È

y1(t) and y2(t)- Error in RK4 Method Approximations
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Y1

i TIME Yi (APPROX) y(ti ) (EXACT) ABS. ERROR Heun’s Error Euler’s Error
0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1 0.100000 0.272041 0.272047 0.000005 0.002330 0.027953
2 0.200000 0.495482 0.495491 0.000009 0.003867 0.043943
3 0.300000 0.679522 0.679533 0.000012 0.004834 0.051591
4 0.400000 0.831387 0.831401 0.000013 0.005400 0.053559
5 0.500000 0.956714 0.956728 0.000014 0.005687 0.051782

...
16 1.600000 1.321828 1.321842 0.000014 0.004318 0.006996
17 1.700000 1.290272 1.290285 0.000013 0.004141 0.010615
18 1.800000 1.249785 1.249798 0.000013 0.003958 0.013892
19 1.900000 1.200683 1.200696 0.000013 0.003766 0.016860
20 2.000000 1.143324 1.143337 0.000012 0.003563 0.019546

Y2

i TIME Yi (APPROX) y(ti ) (EXACT) ABS. ERROR Heun’s Error Euler’s Error
0 0.000000 ≠1.000000 ≠1.000000 0.000000 0.000000 0.000000
1 0.100000 ≠1.077045 ≠1.077051 0.000005 0.002076 0.022949
2 0.200000 ≠1.115543 ≠1.115552 0.000009 0.003374 0.034398
3 0.300000 ≠1.124820 ≠1.124831 0.000011 0.004117 0.037884
4 0.400000 ≠1.112290 ≠1.112302 0.000013 0.004470 0.036004
5 0.500000 ≠1.083820 ≠1.083833 0.000014 0.004557 0.030641

...
16 1.600000 ≠0.524152 ≠0.524165 0.000013 0.001799 0.054900
17 1.700000 ≠0.481292 ≠0.481304 0.000012 0.001586 0.059694
18 1.800000 ≠0.441237 ≠0.441249 0.000012 0.001385 0.063880
19 1.900000 ≠0.403953 ≠0.403964 0.000012 0.001192 0.067475
20 2.000000 ≠0.369363 ≠0.369375 0.000011 0.001006 0.070497
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End of Section

83 / 131



Introduction
Analytical Solutions to Systems of First Order ODEs
Numerical Methods for Systems of First Order ODEs

Geometrical Study of Solutions to Systems of First Order ODEs
Appendix

Introduction
Phase Space/Portraits, Direction Fields, Steady States - Vocabulary
Classification of Steady States for Linear Systems of ODEs
Classification of Steady States for Nonlinear Systems of ODEs

Geometrical Study of Solutions to Systems of First Order ODEs
Introduction

Òæ More so than for single di�erential equations, systems of di�erential
equations are hard to solve (in the earlier part of this lecture we
only considered a very small subset: linear homogeneous systems
with constant coe�cient matrices). Furthermore, often we are just
interested in patterns or general behaviour of solutions to the
scenario being modelled by a system of ODEs, and these can be
determined by a geometric analysis of the system of ODEs without
solving it!.

Òæ Much of this geometrical work will be done for systems of 2 ODEs,
but the (often relatively straightforward) generalisations to systems
of 3 or more ODEs will be mentioned.

Òæ Again, much of the work will be done initially for linear constant
coe�cient systems of ODEs, and then the very straighforward
generalisation to nonlinear systems will be covered.
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Òæ The geometrical techniques we will use on general systems
of first order ODEs will fall into three broad categories:

1. Generating and interpreting direction fields in the phase
space.

2. Creating phase portraits (by hand).

3. Finding and classifying the steady states of the system
of ODEs using calculus and linear algebra.

I Sometimes information from number 3 is used to help
inform the creation of phase portraits in number 2 and/or
to help choose a suitable domain in which to generate a
direction field in number 1.
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Phase Space, Phase Portraits, Direction Fields, Steady States - Vocabulary

Òæ This sub-section is essentially a crucial vocabulary lesson.

I DEFINITION A phase space for a system of n first order

differential equations
dy̨
dt

= f (t, y̨) is simply an n≠dimensional
coordinate system with axes yi , i = 1, . . . , n, in which the trajectory

of the solution vector y̨ =

Q

a
y1(t)

...
yn(t)

R

b can be traced out as t

increases.
º In practice, a set of such solution trajectories can only easily

be visualised for systems of 2 (or 3) ODEs, in which case it is

called a phase plane .

‘æ All of the subsequent definitions of key terminology such a nullclines and steady
states will be related to/based on the graphs of solutions in phase space.
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Òæ The phase plane (more generally, phase space) is a powerful tool for
making sense of the behaviour of solutions to autonomous systems
of ODEs - which often arise in modelling biological processes.
Indeed, it is often more informative than the graphs of individual
solutions as functions of time, yi(t) versus t.

Òæ One can also re-create (approximately) those graphs of individual
solutions versus time from a phase plane plot of the solutions (and
vice versa, although we won’t really need this). This is possibly best
illustrated by an example.

I On the following page is the phase plot for the ODE system

dy̨
dt =

3
0 1

≠4 0

4 3
y1(t)
y2(t)

4
with y̨(0) =

3
1
1

4

along with plots of y1 and y2 versus t and a description of how one
could get from the phase plane plot to the solutions versus time
plots.
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Phase Plane Plot yi Versus t Plot
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-3

-2
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0

1
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3

y1

y2

I Starting at (y1, y2) = (1, 1) in the phase plane, we see that the value of y1
increases briefly to its peak slightly above 1 then decreases all the way down to
a value slightly below ≠1 then increases all the way to 1 again.

I At the same time, y2 decreases to a lowest value of just below ≠2 (which
coincides with when y1 is 0, then it increases to just above 2 (again coinciding
with when y1 is 0), then descends again to 1.

I These two solution behaviours as functions of time are confirmed by the second
plot above.
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Steady States

Òæ As for single autonomous ODEs, the equilibrium points of an autonomous
system of ODEs dy̨

dt
= f (y̨) are just the solutions to

f (y̨) = 0̨.

When dealing with systems of ODEs, these equilibrium points are typically
called steady states (for hopefully obvious reasons).

Òæ NOTE to find the steady states of a nonlinear system of ODEs, one has to
solve a nonlinear system of equations - so some of the methods mentioned in
Lecture 3 and Tutorial 3 such as the use of Matlab’s in-built function fsolve
can be used.

I EXAMPLE 21 : If An◊n is a non-singular matrix then the only steady state in

the system
dy̨
dt

= Ay̨ is the unique solution to Ay̨ = 0̨, which is the
n≠dimensional 0 vector.

I Thus the only steady state of (nonsingular) linear systems of ODEs is the origin
in phase space.

89 / 131



Introduction
Analytical Solutions to Systems of First Order ODEs
Numerical Methods for Systems of First Order ODEs

Geometrical Study of Solutions to Systems of First Order ODEs
Appendix

Introduction
Phase Space/Portraits, Direction Fields, Steady States - Vocabulary
Classification of Steady States for Linear Systems of ODEs
Classification of Steady States for Nonlinear Systems of ODEs

Steady States

Òæ As for single autonomous ODEs, the equilibrium points of an autonomous
system of ODEs dy̨

dt
= f (y̨) are just the solutions to

f (y̨) = 0̨.

When dealing with systems of ODEs, these equilibrium points are typically
called steady states (for hopefully obvious reasons).

Òæ NOTE to find the steady states of a nonlinear system of ODEs, one has to
solve a nonlinear system of equations - so some of the methods mentioned in
Lecture 3 and Tutorial 3 such as the use of Matlab’s in-built function fsolve
can be used.

I EXAMPLE 21 : If An◊n is a non-singular matrix then the only steady state in

the system
dy̨
dt

= Ay̨ is the unique solution to Ay̨ = 0̨, which is the
n≠dimensional 0 vector.

I Thus the only steady state of (nonsingular) linear systems of ODEs is the origin
in phase space.

89 / 131



Introduction
Analytical Solutions to Systems of First Order ODEs
Numerical Methods for Systems of First Order ODEs

Geometrical Study of Solutions to Systems of First Order ODEs
Appendix

Introduction
Phase Space/Portraits, Direction Fields, Steady States - Vocabulary
Classification of Steady States for Linear Systems of ODEs
Classification of Steady States for Nonlinear Systems of ODEs

Steady States

Òæ As for single autonomous ODEs, the equilibrium points of an autonomous
system of ODEs dy̨

dt
= f (y̨) are just the solutions to

f (y̨) = 0̨.

When dealing with systems of ODEs, these equilibrium points are typically
called steady states (for hopefully obvious reasons).

Òæ NOTE to find the steady states of a nonlinear system of ODEs, one has to
solve a nonlinear system of equations - so some of the methods mentioned in
Lecture 3 and Tutorial 3 such as the use of Matlab’s in-built function fsolve
can be used.

I EXAMPLE 21 : If An◊n is a non-singular matrix then the only steady state in

the system
dy̨
dt

= Ay̨ is the unique solution to Ay̨ = 0̨, which is the
n≠dimensional 0 vector.

I Thus the only steady state of (nonsingular) linear systems of ODEs is the origin
in phase space.

89 / 131



Introduction
Analytical Solutions to Systems of First Order ODEs
Numerical Methods for Systems of First Order ODEs

Geometrical Study of Solutions to Systems of First Order ODEs
Appendix

Introduction
Phase Space/Portraits, Direction Fields, Steady States - Vocabulary
Classification of Steady States for Linear Systems of ODEs
Classification of Steady States for Nonlinear Systems of ODEs

Steady States

Òæ As for single autonomous ODEs, the equilibrium points of an autonomous
system of ODEs dy̨

dt
= f (y̨) are just the solutions to

f (y̨) = 0̨.

When dealing with systems of ODEs, these equilibrium points are typically
called steady states (for hopefully obvious reasons).

Òæ NOTE to find the steady states of a nonlinear system of ODEs, one has to
solve a nonlinear system of equations - so some of the methods mentioned in
Lecture 3 and Tutorial 3 such as the use of Matlab’s in-built function fsolve
can be used.

I EXAMPLE 21 : If An◊n is a non-singular matrix then the only steady state in

the system
dy̨
dt

= Ay̨ is

the unique solution to Ay̨ = 0̨, which is the
n≠dimensional 0 vector.

I Thus the only steady state of (nonsingular) linear systems of ODEs is the origin
in phase space.
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I EXAMPLE 22 : Find the steady state(s) of dy̨
dt

=
1 6y1 + 6y2 + 12

6y1 + 6y2
2 ≠ 24

2
.

I ANSWER

We seek to solve the simultaneous equations

6y1 + 6y2 + 12 = 0 and 6y1 + 6y2
2 ≠ 24 = 0.

Setting the two equations equal to each other since they are both 0, we get

6y2
2 ≠ 24 = 6y2 + 12 ∆ y2

2 ≠ y2 ≠ 6 = 0 ∆ (y2 ≠ 3)(y2 + 2) = 0

y2 = 3, ≠2.

To find the corresponding values for y1 we can use either (or both) equation(s).
For example using the first one we get
y2 = 3 ∆ 6y1 + 6(3) + 12 = 0 ∆ 6y1 = ≠30 ∆ y1 = ≠5 .

Similarly, y2 = ≠2 ∆ 6y1 + 6(≠2) + 12 = 0 ∆ y1 = 0 .

So the steady states are : (0, ≠2) and (≠5, 3).

 Or just use fsolve as described in Tutorial 3, but note you will have to use
di�erent starting points (ordered pairs) to get the two di�erent steady states.

I I’d suggest plotting the two graphs together to see approximately where they
intersect and then choosing starting values close to each intersection point.
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Types and Stability of Steady States

Òæ As for single autonomous ODEs, the steady states of autonomous systems of
ODEs can be classifed by their stability. They can also be classified by their
type - which is a way of categorising how solutions close to them behave.

For
the autonomous ODE system dy̨

dt
= f (y̨) a steady state y̨0 is:

B asymptotically stable/a sink if all solution trajectories in the phase

space which start out near to y̨0 move closer to y̨0 as t æ Œ;

B unstable/repelling/(a source) if some solution trajectories in the

phase space which starts out near to y̨0 move away from y̨0 as t æ Œ;

B stable if each solution trajectory in the phase space which starts out
near to y̨0 stays the same distance away from y̨0 as t æ Œ.
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Òæ There are four main categories of steady states:

1. Centres. These are always STABLE.

2. Spiral Points, also called Focuses. These can be ASYMPTOTICALLY
STABLE or UNSTABLE.

3. Saddle Points. These are always UNSTABLE

4. Nodes, both proper and improper. These can be ASYMPTOTICALLY
STABLE or UNSTABLE.

I Instead of giving formal definitions at this point, I will just show you what they
look like in a phase plane and highlight their key features, as well as show
representative plots in the t-y plane. Knowing the names is less important than
knowing the behaviours and how to determine those behaviours for a given
steady state.

I As a useful exercise, with each steady state type in what follows try to think of
the types of solutions to linear homogeneous constant coe�cient systems
dy̨
dt = Ay̨ (based on the types of eigenvalues of A) which coincide with the
steady state type based on the solution plots in the t-y plane.

I In the following diagrams, the origin (0, 0), is the steady state.
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Phase Plane Plot Sample Solution vs Time Plot

Òæ The choice of the name centre is obvious from the phase plane plot.

Òæ The solutions are periodic functions which each oscillate around its component
of the steady state.
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Òæ The choice of the name spiral point or focus is obvious from the phase plane
plot.

Òæ This shows an asymptotically stable spiral point. In an unstable spiral point, the
arrows would point in the opposite direction (away from the origin).

Òæ The sample solutions for an asymptotically stable spiral point are shown. Each
function oscillates around its component of the steady state and the amplitude
of those oscillations decrease with increasing time. For an unstable spiral point,
the oscillations would increase with increasing time.
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Òæ The choice of the name saddle point is obvious from the phase plane plot if one
remembers that term from optimisation of functions of 2 independent variables.

Òæ The sample solutions are representative: one of the solutions always approaches
its component of the steady state and the other always diverges away from its
component of the steady state as t æ Œ.

Òæ So saddle points are always unstable.
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Òæ This shows a proper node. The plots on the next page show improper nodes.

Òæ This node is asymptotically stable (a sink). On the following page, one node is
unstable and the other is asymptotically stable. Obviously, reversing the arrows
on the diagrams changes an asymptotically stable node to unstable and vice
versa.
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An Asymptotically Stable Improper Node
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Direction Fields

Òæ As with single ODEs, direction fields, drawn in phase space, are helpful in
determining the general behaviour of solutions to system of ODEs.

Òæ This is particularly the case if we know the steady states so that we can include
them in the region in which we draw direction fields.

I Let us consider the autonomous ODE system

A dy1
dt

dy2
dt

B
=

1
F1(y1, y2)
F2(y1, y2)

2
. If

we wish to think of y2(t) as a function (or relation) of y1(t), then by the Chain
Rule we have

y2 = y2(y1(t)) ∆
dy2
dt

= dy2
dy1

dy1
dt

∆
dy2
dy1

= dy2/dt
dy1/dt

.

KEY RESULT y1 = y1(t) and y2 = y2(t) then

dy2
dy1

= dy2/dt
dy1/dt

=
y Õ

2(t)
y Õ

1(t)
= ẏ2

ẏ1
= F2(y1, y2)

F1(y1, y2)
.

Òæ In particular, at each point t, the vector
! dy1

dt , dy2
dt

"
is tangent to the trajectory

traced out by (y1(t), y2(t)) in the phase plane. Ask if you are not sure why.
(Technically, at each point t the position vector

! dy1
dt ,

dy2
dt

"
, with origin at (0, 0), when shifted to the

point (y1, y2) in the phase plane is tangent to the curve traced out by (y1(t), y2(t))).
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ẏ1
= F2(y1, y2)

F1(y1, y2)
.

Òæ In particular, at each point t, the vector
! dy1

dt , dy2
dt

"
is tangent to the trajectory

traced out by (y1(t), y2(t)) in the phase plane. Ask if you are not sure why.
(Technically, at each point t the position vector

! dy1
dt ,

dy2
dt

"
, with origin at (0, 0), when shifted to the

point (y1, y2) in the phase plane is tangent to the curve traced out by (y1(t), y2(t))).

98 / 131



Introduction
Analytical Solutions to Systems of First Order ODEs
Numerical Methods for Systems of First Order ODEs

Geometrical Study of Solutions to Systems of First Order ODEs
Appendix

Introduction
Phase Space/Portraits, Direction Fields, Steady States - Vocabulary
Classification of Steady States for Linear Systems of ODEs
Classification of Steady States for Nonlinear Systems of ODEs

Direction Fields

Òæ As with single ODEs, direction fields, drawn in phase space, are helpful in
determining the general behaviour of solutions to system of ODEs.

Òæ This is particularly the case if we know the steady states so that we can include
them in the region in which we draw direction fields.

I Let us consider the autonomous ODE system

A dy1
dt

dy2
dt

B
=

1
F1(y1, y2)
F2(y1, y2)

2
. If

we wish to think of y2(t) as a function (or relation) of y1(t), then by the Chain
Rule we have

y2 = y2(y1(t)) ∆
dy2
dt

= dy2
dy1

dy1
dt

∆

dy2
dy1

= dy2/dt
dy1/dt

.

KEY RESULT y1 = y1(t) and y2 = y2(t) then

dy2
dy1

= dy2/dt
dy1/dt

=
y Õ

2(t)
y Õ

1(t)
= ẏ2
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Òæ So if on a grid of (y1, y2) values we plot a little line segment
parallel to (F1(y1, y2), F2(y1, y2)) at each of the grid points, the
overall picture should show how trajectories of solutions behave in
the phase plane.

Òæ Obviously, while straightforward, this would be tedious to do by
hand, so see Tutorial 4 for a link to a simple Matlab program
which does this automatically. You may use this program or a
slightly modified version of it which I will put up on the course
Moodle page.

Òæ As for single ODEs, this is an easy way to get an idea of how
solutions to a system of ODEs behave, especially near steady
states, without solving the system of ODEs.

I On the following page are some direction fields around steady states at (0, 0).
Try to guess the type and stability of the steady states.
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How to Sketch Phase Portraits

Òæ As we did for single ODEs, we can use calculus to help us sketch what typical
solutions look like (in the phase plane) without solving a system of ODEs.

I DEFINITION In a system of n autonomous first order ODEs,
dy̨
dt

= f̨ (y̨), the jth nullcline is the geometric shape for which

dyj
dt

or fi (y̨) = 0.

º So for systems of 2 ODEs, the nullclines are curves in the phase plane.
I Clearly the steady states are where nullclines intersect.
I Because of the topology of R2, nullclines typically split the plane into regions

where the behaviour of solutions is similar so that we can typically generalise
the local behaviour of solutions near to steady states to the global behaviour of
solutions. This is not typically true for systems of more than 2 ODEs.

I Observe that in R2 if dy1/dt = 0 then y1 does not change with time so all
trajectories on that nullcline must be parallel to the y2 axis (perpendicular to
the y1 axis); similarly, all trajectories on the nullcline dy2/dt = 0 must be
parallel to the y1 axis (perpendicular to the y2 axis).
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How to Sketch Phase Portraits - continued

Here is a systematic way of sketching trajectories in the phase plane forA dy1
dt

dy2
dt

B
=

1
F1(y1, y2)
F2(y1, y2)

2
without solving the system of ODEs

1. If possible, find the steady states by solving the system of algebraic equations
dy1/dt = F1(y1, y2) = 0, dy2/dt = F2(y1, y2) = 0. Otherwise, go to step 2.

2. Plot the vertical nullcline(s), dy1/dt = F1(y1, y2) = 0 and put vertical
trajectories along it (them).

3. Plot the horizontal nullcline(s), dy2/dt = F2(y1, y2) = 0 and put horizontal
trajectories along it (them).

4. Identify the steady states - where the nullclines intersect. Note some of them
might NOT be biologically relevant for a given problem (negative populations,
for example).

5. Use the di�erential equations and select convenient points (y1, y2) [for example,
y1 or y2 = 0 or very large] to determine the sign of dy1/dt = F1(y1, y2) and
dy2/dt = F2(y1, y2) in various regions. Recall that unless these derivatives have
discontinuities, one can assume that the signs of dy1/dt and dy2/dt change
only at the nullclines.
Put left-pointing arrows where dy1/dt < 0, right-pointing arrows where
dy1/dt > 0, downward pointing arrows where dy2/dt < 0, and
upward-pointing arrows where dy2/dt > 0.
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How to Sketch Phase Portraits - continued

6. If not already done, put arrows along the axes y1 = 0 and y2 = 0 to
indicate the direction of trajectories along them.

7. Determine the stability and type of the steady states (if possible) by
looking at the direction of the arrows etc. Sometimes this cannot
be done fully and the analysis using eigenvalues in the later
sub-section can be used.

8. Combine all of the preceding information into a consistent picture,
recalling that trajectories can only intersect at steady state points.

We next give an example of how to construct a phase portrait (taken
largely from section 7.6.1 of A Primer on Mathematical Models in

Biology by Segel and Edelstein-Keshet).
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I EXAMPLE 23 : A dimensionless model for macrophage cells m(t) removing
dead cells a(t) and killing other cells is given by the system:

dm
dt

= –(1 ≠ m)a ≠ ”m,
da
dt

= m ≠ ÷ma ≠ a.

where –, ”, ÷ > 0 are constants. Sketch a phase portrait for this system:

I ANSWER We first try to find the steady states by solving

–(1 ≠ m)a ≠ ”m = 0 ∆ a = ”m
–(1 ≠ m)

and
m ≠ ÷ma ≠ a = 0 ∆ a = m

1 + ÷m
,

so, as a bonus, we also have equations for the two nullclines. Setting both
expressions for a equal to each other, we get

”m
–(1 ≠ m)

= m
1 + ÷m

So clearly m = 0, a = 0 is a steady state.
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expressions for a equal to each other, we get

”m
–(1 ≠ m)

= m
1 + ÷m

So clearly m = 0, a = 0 is a steady state.
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I So if m ”= 0 we can divide both sides by it and get the equation

”

–(1 ≠ m)
= 1

1 + ÷m
∆ ” + ”÷m = –(1 ≠ m) ∆

”÷m + –m = – ≠ ” ∆ m = – ≠ ”

”÷ + –

We can now use any of the equations for a on the preceding page. For example,
using the second equation, we have

a = m
1 + ÷m

= (– ≠ ”)/(”÷ + –)
1 + (÷– ≠ ÷”)/(”÷ + –)

= (– ≠ ”)/(”÷ + –)
(��”÷ + – + ÷– ≠��”÷)/(”÷ + –)

∆

a = – ≠ ”

–(÷ + 1)
.

I We can now generate a graph of the nullclines and steady states using
– = 1, ” = 0.2, ÷ = 1. (Note values outside of the first quadrant make no sense
for this problem but I include them to help determine the type of steady state
at the origin).
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I We will next put vertical arrows across the red curve dm/dt = 0 and horizontal
arrows across the blue curve da/dt = 0.

I We also calculate dm/dt = –(1 ≠ m)a ≠ ”m and da/dt = m ≠ ÷ma ≠ a in
various regions (done in Matlab) and insert appropriately-scaled vectors parallel
to the (dm/dt, da/dt) vectors and emanating from those points.

Sample point (dm/dt, da/dt)
(0, 1) (1, ≠1)

(≠0.5, ≠0.5) (≠0.65, ≠0.25)
(0.5, ≠0.5) (≠0.35, 1.25)
(0.4, 0.2) (0.04, 0.12)
(0.9, 0.8) (≠0.1, ≠0.62)
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I From this we see some trajectories going towards the origin and some moving
away, so it is likely an saddle point (hence unstable).

I On the other hand, trajectories seem to move towards the steady state in the
first quadrant, so it appears asymptotically stable and the pattern of approach
suggest it is likely a node (although there are other possibilities). The
classification of the steady states can be confirmed by an eigenvalue analysis as
described later.
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classification of the steady states can be confirmed by an eigenvalue analysis as
described later.
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I This direction field plot confirms our conclusions on the preceding page.
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Classification of Steady State for Linear Systems of ODEs

Òæ Recall from earlier that the constant coe�cient linear system of
ODEs y̨ Õ = Ay̨ has only one steady state:

the zero vector.
Òæ We can easily classify that steady state based on the eigenvalues of

the matrix A.
‘æ These classifications are easy to understand if the form of solutions

to the ODE system with di�erent types of eigenvalues are recalled
(See the first section of these lecture notes).

I NOTE there are tests which do not require the calculation of the
eigenvalues and just require looking at certain combinations of the
entries of the matrix A (I won’t cover those in any detail but you
can find them summarised in many standard ODE or Mathematical
Biology books, including several on the course’s reading list).

I We will discuss this classification based on the eigenvalue types of
A, looking at 5 cases and then summarising at the end.
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‘æ First just a few general observations regarding the
EIGENVECTORS of A, given that the solution of the ODE
system is typically of the form y̨ = Av̨1e⁄1t + Bv̨2e⁄2t .

I If initial conditions are such that either A or B is zero, the solution
vector will just be a scalar multiple of one of the eigenvectors,
hence its trajectory in the phase plane will just be the line through
the origin determined by that eigenvector.

I Thus solution trajectories that start out on the line determined by
one of the eigenvectors just follows that line as t æ Œ, going away
from the origin if the corresponding eigenvalue is positive (unstable)
or towards the origin if the corresponding eigenvalue is negative
(asymptotically stable) .

I Solution trajectories which do not start o� on an eigenvector are
generally curved and tend towards the eigenvector associated with
the largest eigenvalue as t increases.
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I If initial conditions are such that either A or B is zero, the solution
vector will just be a scalar multiple of one of the eigenvectors,
hence its trajectory in the phase plane will just be the line through
the origin determined by that eigenvector.

I Thus solution trajectories that start out on the line determined by
one of the eigenvectors just follows that line as t æ Œ, going away
from the origin if the corresponding eigenvalue is positive (unstable)
or towards the origin if the corresponding eigenvalue is negative
(asymptotically stable) .

I Solution trajectories which do not start o� on an eigenvector are
generally curved and tend towards the eigenvector associated with
the largest eigenvalue as t increases.
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CASE 1: ⁄1, ⁄2 real, unequal, and of SAME sign

Òæ In that case, the form of the solution is y̨(t) = Av̨1e⁄1t + Bv̨2e⁄2t

I It is then easy to see that if both eigenvalues are negative, the
solution vector y̨ must approach 0̨, the steady state, as t æ Œ
hence the steady state is asymptotically stable.

I It is also clear that if both eigenvalues are positive the solution
vector diverges away from 0̨, the steady state, as t æ Œ hence the
steady state is unstable.

Òæ This type of steady state is called a Node.
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CASE 2: ⁄1, ⁄2 real, unequal, and of DIFFERENT signs

Òæ Without loss of generality, assume ⁄1 < 0 < ⁄2.

The form of the
solution is y̨(t) = Av̨1e⁄1t + Bv̨2e⁄2t

I It is then easy to see that only if a solution starts out with B = 0
(so along the line determined by the eigenvector v̨1 will solutions
approach the (0, 0) steady state as t æ Œ; otherwise, solutions
approach Œ (tangent to the line determined by the eigenvector v̨2).
Hence the steady state is unstable.

Òæ This type of steady state is called a Saddle Point.
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CASE 3: ⁄1 = ⁄2 real, equal eigenvalues

Òæ There are two main cases:

I. There are two linearly independent eigenvectors v̨1 and v̨2: In this case,
the solution is of the form y̨(t) = Av̨1e⁄1t + Bv̨2e⁄1t . NOTE the ratio
y1/y2 is now independent of t (the e⁄1t terms cancel out) but is
dependent on the eigenvectors and the arbitrary constants A and B.
Hence trajectories are lines through the origin (steady state) and that
steady state is known as a Proper Node (sometimes “star point”).
Clearly it is asymptotically stable if ⁄1 = ⁄2 < 0 and is unstable if
⁄1 = ⁄2 > 0.

II. There is one linearly independent eigenvector v̨1 and a generalised
eigenvector ÷̨: In this case the solution is of the form
y̨(t) = Av̨1e⁄1t + B(v̨1te⁄1t + ÷̨e⁄1t).
In this case, if ⁄1 > 0 the solutions clearly diverges away from 0 as
t æ Œ and are therefore unstable. If ⁄1 < 0 - say ⁄1 = ≠r where r > 0,
then by L’Hôpital’s rule

lim
tæŒ

te≠rt = lim
tæŒ

t
ert = lim

tæŒ

d
dt (t)

d
dt (ert)

= lim
tæŒ

1
rert = 0.

Thus solutions approach 0 as t æ Œ, therefore the steady state is
asymptotically stable.
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CASE 4: ⁄1, ⁄2 = a ± ib complex conjugate pair with nonzero real and imaginary parts

Òæ From the earlier examples, the solutions tend to be the product of
an exponential term (with exponent at) and a combination of
sinusoidal terms.

I It is then easy to see that solutions will have oscillations as time
increases, which will either dampen to the zero steady state
solution (if a < 0) or be continually amplified (if a > 0). Hence in
the first case the steady state is asymptotically stable and in the
second case it is unstable.

Òæ This type of steady state is called a Spiral Point (or focus).
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CASE 5: ⁄1, ⁄2 = ±ib complex conjugate pure imaginary

Òæ This is as in the previous case but now without the exponential
term, so just a sinusoidal solution.

I It is then easy to see that solutions will be periodic and will be
represented in the phase plane by closed curves. The steady state is
Stable but not Asymptotically Stable since solutions do not
approach it over time (but don’t diverge from it either).

Òæ This type of steady state is called a Centre.
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SUMMARY: Classification of Steady States for
dy̨
dt

= Ay̨ , A2◊2 a
nonsingular matrix with eigenvalues ⁄1 and ⁄2:

Eigenvalue Type of Steady State Stability
⁄1 > ⁄2 > 0 Node Unstable
⁄1 < ⁄2 < 0 Node Asymptotically stable
⁄1 < 0 < ⁄2 Saddle Point Unstable

⁄1 = ⁄2 > 0 Proper or Improper node Unstable
⁄1 = ⁄2 < 0 Proper or Improper node Asymptotically stable

⁄1, ⁄2 = a ± ib Spiral Point/Focus a < 0 ∆ Asymptotically
stable, a > 0 ∆ Unstable

⁄1, ⁄2 = ±ib Centre Stable
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I For linear constant coe�cient matrix systems of more than 2 ODEs,
a similar (albeit more complicated) analysis can be carried out as
was done here.

I The cases in higher dimensions are essentially just combinations of
the di�erent cases seen here. For example, for systems of two
equations one could have a complex conjugate pair of solutions
meaning that solutions along a certain plane may spiral to/from the
origin while, for example if the other eigenvalue is a negative
number other solutions could tend towards the origin along a line
transverse to the plane in which solutions spiral.

I One nice thing that the topology of R2 allows is that local
behaviour (near to steady states) in the phase plane can be
generalised to global behaviour and one can get a good idea of how
solutions behave everywhere in the plane. This is not the case in
higher dimensions.
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Classification of Steady States for Noninear Systems of ODEs

Òæ The good news is we have done all of the required hard work in the previous
sections.

Òæ If the nonlinear autonomous system of ODEs
dy̨
dt

= F̨ (̨y) has steady state y̨0 so

that F̨ (y̨0) = 0̨, then a Taylor series expansion about y̨0 (assuming F̨ is at least
C2), ignoring second and higher order terms, is F̨ (̨y) ¥ 0̨ + F̨ Õ(̨y0)(̨y ≠ y̨0)
where F̨ Õ(y̨0) is the Jacobian matrix of F̨ evaluated at the steady state y̨0.
Noting that dy̨

dt = d (̨y≠y̨0)
dt , then the di�erential equation becomes

(approximately)
dy̨
dt

= d(y̨ ≠ y̨0)
dt

= F̨ Õ(y̨0)(y̨ ≠ y̨0).

I Crucially, this is a linear constant coe�cient system of ODEs with the Jacobian
of F̨ evaluated at the steady state being the coe�cient matrix. It can be shown

that the steady states of the nonlinear
dy̨
dt

= F̨ (̨y) behave just like the steady
states of this linearisation (with one exception), so we typically only need
examine the eigenvalues of the matrix F̨ Õ(y̨0) at each steady state of
dy̨
dt

= F̨ (̨y) to determine the nature of that steady state.
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I The only case in which the earlier classification between linear systems and the
nonlinear system may di�er is highlighted in yellow in the following table,
reproduced from earlier this lecture.

SUMMARY: Classification of Steady States for
dy̨
dt

= F̨ (̨y), where F̨ Õ(̨y0) is a
2 ◊ 2 Jacobian matrix evaluated at the steady state y̨0 which is nonsingular and has

eigenvalues ⁄1 and ⁄2:
Eigenvalue Type of Steady State Stability
⁄1 > ⁄2 > 0 Node Unstable
⁄1 < ⁄2 < 0 Node Asymptotically stable
⁄1 < 0 < ⁄2 Saddle Point Unstable

⁄1 = ⁄2 > 0 Proper or Improper node Unstable
⁄1 = ⁄2 < 0 Proper or Improper node Asymptotically stable

⁄1, ⁄2 = a ± ib Spiral Point/Focus a < 0 ∆ Asymptotically
stable, a > 0 ∆ Unstable

⁄1, ⁄2 = ±ib Centre or Spiral Point Asymptotically stable
Stable, or Unstable

In the last, ambiguous case, check the nonlinear terms or use a direction field etc. to
confirm the type and stability of the steady state.
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I The only case in which the earlier classification between linear systems and the
nonlinear system may di�er is highlighted in yellow in the following table,
reproduced from earlier this lecture.

SUMMARY: Classification of Steady States for
dy̨
dt

= F̨ (̨y), where F̨ Õ(̨y0) is a
2 ◊ 2 Jacobian matrix evaluated at the steady state y̨0 which is nonsingular and has

eigenvalues ⁄1 and ⁄2:
Eigenvalue Type of Steady State Stability
⁄1 > ⁄2 > 0 Node Unstable
⁄1 < ⁄2 < 0 Node Asymptotically stable
⁄1 < 0 < ⁄2 Saddle Point Unstable

⁄1 = ⁄2 > 0 Proper or Improper node Unstable
⁄1 = ⁄2 < 0 Proper or Improper node Asymptotically stable

⁄1, ⁄2 = a ± ib Spiral Point/Focus a < 0 ∆ Asymptotically
stable, a > 0 ∆ Unstable

⁄1, ⁄2 = ±ib Centre or Spiral Point Asymptotically stable
Stable, or Unstable

In the last, ambiguous case, check the nonlinear terms or use a direction field etc. to
confirm the type and stability of the steady state.
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I EXAMPLE 24 : Returning to the macrophage model of EXAMPLE 23, use
eigenvalues to classify the two steady state solutions (0, 0) and!

–≠”
”÷+– , –≠”

–(÷+1)
"

in the model

dm
dt

= –(1 ≠ m)a ≠ ”m,
da
dt

= m ≠ ÷ma ≠ a.

where – = 1, ” = 0.2, ÷ = 1 (as in the graphs produced in EXAMPLE 23).

I ANSWER As a function of m and a, the Jacobian matrix is
3

ˆ
ˆm [–(1 ≠ m)a ≠ ”m] ˆ

ˆa [–(1 ≠ m)a ≠ ”m]
ˆ

ˆm [m ≠ ÷ma ≠ a] ˆ
ˆa [m ≠ ÷ma ≠ a]

4
=

1
≠–a ≠ ” –(1 ≠ m)
1 ≠ ÷a ≠÷m ≠ 1

2

So evaluated at the steady state (0, 0) the Jacobian is
1

≠” –
1 ≠1

2
=

1
≠0.2 1

1 ≠1

2
.

º Using Matlab’s eig() function on this matrix, we see that the eigenvalues are
≠1.67703 and 0.47703, so we conclude that (0, 0) is an (unstable) saddle
point.
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I Similarly at the steady state
A

– ≠ ”

”÷ + –
,

– ≠ ”

–(÷ + 1)

B

¥ (0.66667, 0.4),

the Jacobian matrix is

A
≠0.6 0.33333
0.6 ≠1.66667

B

.

º Using Matlab’s eig() function on this matrix, we see
that the eigenvalues are ≠0.43731 and ≠1.82935, so
we conclude that (0.66667, 0.4) is an asymptotically
stable node.
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APPENDIX A
Here is an image summarising one way to categorise the steady states of a linear

constant coe�cient 2 ◊ 2 system of ODEs without explicitly computing eigenvalues:
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APPENDIX B - Inhomogeneous Systems x̨ Õ = Ax̨ + g̨(t), An◊n

Òæ There are several techniques for solving inhomogeneous
systems; we will discuss two:

1. Diagonalisation (inhomgeneous systems for which the
homogeneous part, x̨ Õ = Ax̨ , has n linearly independent
solutions, where An◊n has n linearly independent
eigenvectors).

2. The Method of Undetermined Coe�cients for systems.
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1. Diagonalisation Approach to Solving x̨ Õ = Ax̨ + g̨(t)

I First - review how to solve a first order linear ODE using an integrating factor
from Lecture 2 since it will be needed in what follows.

Òæ Assuming A can be diagonalised so that P≠1AP = D is a diagonal matrix (see
the Supplementary Lecture on Eigenvalues/Eigenvectors for details), then
A = PDP≠1.

I So x̨ Õ = Ax̨ + g̨(t) can be written as

x̨ Õ = PDP≠1x̨ + g̨(t) ∆
P≠1x̨ Õ = DP≠1x̨ + P≠1g̨(t) ∆

(P≠1x̨) Õ = D(P≠1x̨) + P≠1g̨(t) since P is a constant matrix.

Òæ Because of the diagonal nature of D, each row of the last vector equation is
simply an uncoupled first order linear ODE (of the form y Õ = di y + h(t)) for
the unknown yi = (P≠1x̨)i . So we simply solve the equations separately to
obtain P≠1x̨ then multiply on the left by P to obtain x̨(t).

I NOTE recall that when using this diagonalisation approach with homogeneous
linear systems of ODEs, we do not need to know P≠1. However, we DO need
to know P≠1 when solving the inhomogeneous system x̨ Õ = Ax̨ + g̨(t) - in
order to compute P≠1g̨(t).
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I NOTE recall that when using this diagonalisation approach with homogeneous
linear systems of ODEs, we do not need to know P≠1. However, we DO need
to know P≠1 when solving the inhomogeneous system x̨ Õ = Ax̨ + g̨(t) - in
order to compute P≠1g̨(t).

125 / 131



Introduction
Analytical Solutions to Systems of First Order ODEs
Numerical Methods for Systems of First Order ODEs

Geometrical Study of Solutions to Systems of First Order ODEs
Appendix

1. Diagonalisation Approach to Solving x̨ Õ = Ax̨ + g̨(t)

I First - review how to solve a first order linear ODE using an integrating factor
from Lecture 2 since it will be needed in what follows.

Òæ Assuming A can be diagonalised so that P≠1AP = D is a diagonal matrix (see
the Supplementary Lecture on Eigenvalues/Eigenvectors for details), then
A = PDP≠1.

I So x̨ Õ = Ax̨ + g̨(t) can be written as

x̨ Õ = PDP≠1x̨ + g̨(t) ∆
P≠1x̨ Õ = DP≠1x̨ + P≠1g̨(t) ∆

(P≠1x̨) Õ = D(P≠1x̨) + P≠1g̨(t) since P is a constant matrix.

Òæ Because of the diagonal nature of D, each row of the last vector equation is
simply an uncoupled first order linear ODE (of the form y Õ = di y + h(t)) for
the unknown yi = (P≠1x̨)i . So we simply solve the equations separately to
obtain P≠1x̨ then multiply on the left by P to obtain x̨(t).

I NOTE recall that when using this diagonalisation approach with homogeneous
linear systems of ODEs, we do not need to know P≠1. However, we DO need
to know P≠1 when solving the inhomogeneous system x̨ Õ = Ax̨ + g̨(t) - in
order to compute P≠1g̨(t).

125 / 131



Introduction
Analytical Solutions to Systems of First Order ODEs
Numerical Methods for Systems of First Order ODEs

Geometrical Study of Solutions to Systems of First Order ODEs
Appendix

1. Diagonalisation Approach to Solving x̨ Õ = Ax̨ + g̨(t)

I First - review how to solve a first order linear ODE using an integrating factor
from Lecture 2 since it will be needed in what follows.

Òæ Assuming A can be diagonalised so that P≠1AP = D is a diagonal matrix (see
the Supplementary Lecture on Eigenvalues/Eigenvectors for details), then
A = PDP≠1.

I So x̨ Õ = Ax̨ + g̨(t) can be written as

x̨ Õ = PDP≠1x̨ + g̨(t) ∆
P≠1x̨ Õ = DP≠1x̨ + P≠1g̨(t) ∆

(P≠1x̨) Õ = D(P≠1x̨) + P≠1g̨(t) since P is a constant matrix.

Òæ Because of the diagonal nature of D, each row of the last vector equation is
simply an uncoupled first order linear ODE (of the form y Õ = di y + h(t)) for
the unknown yi = (P≠1x̨)i .

So we simply solve the equations separately to
obtain P≠1x̨ then multiply on the left by P to obtain x̨(t).

I NOTE recall that when using this diagonalisation approach with homogeneous
linear systems of ODEs, we do not need to know P≠1. However, we DO need
to know P≠1 when solving the inhomogeneous system x̨ Õ = Ax̨ + g̨(t) - in
order to compute P≠1g̨(t).

125 / 131



Introduction
Analytical Solutions to Systems of First Order ODEs
Numerical Methods for Systems of First Order ODEs

Geometrical Study of Solutions to Systems of First Order ODEs
Appendix

1. Diagonalisation Approach to Solving x̨ Õ = Ax̨ + g̨(t)

I First - review how to solve a first order linear ODE using an integrating factor
from Lecture 2 since it will be needed in what follows.

Òæ Assuming A can be diagonalised so that P≠1AP = D is a diagonal matrix (see
the Supplementary Lecture on Eigenvalues/Eigenvectors for details), then
A = PDP≠1.

I So x̨ Õ = Ax̨ + g̨(t) can be written as

x̨ Õ = PDP≠1x̨ + g̨(t) ∆
P≠1x̨ Õ = DP≠1x̨ + P≠1g̨(t) ∆

(P≠1x̨) Õ = D(P≠1x̨) + P≠1g̨(t) since P is a constant matrix.

Òæ Because of the diagonal nature of D, each row of the last vector equation is
simply an uncoupled first order linear ODE (of the form y Õ = di y + h(t)) for
the unknown yi = (P≠1x̨)i . So we simply solve the equations separately to
obtain P≠1x̨ then multiply on the left by P to obtain x̨(t).

I NOTE recall that when using this diagonalisation approach with homogeneous
linear systems of ODEs, we do not need to know P≠1. However, we DO need
to know P≠1 when solving the inhomogeneous system x̨ Õ = Ax̨ + g̨(t) - in
order to compute P≠1g̨(t).

125 / 131



Introduction
Analytical Solutions to Systems of First Order ODEs
Numerical Methods for Systems of First Order ODEs

Geometrical Study of Solutions to Systems of First Order ODEs
Appendix

1. Diagonalisation Approach to Solving x̨ Õ = Ax̨ + g̨(t)

I First - review how to solve a first order linear ODE using an integrating factor
from Lecture 2 since it will be needed in what follows.

Òæ Assuming A can be diagonalised so that P≠1AP = D is a diagonal matrix (see
the Supplementary Lecture on Eigenvalues/Eigenvectors for details), then
A = PDP≠1.

I So x̨ Õ = Ax̨ + g̨(t) can be written as

x̨ Õ = PDP≠1x̨ + g̨(t) ∆
P≠1x̨ Õ = DP≠1x̨ + P≠1g̨(t) ∆

(P≠1x̨) Õ = D(P≠1x̨) + P≠1g̨(t) since P is a constant matrix.

Òæ Because of the diagonal nature of D, each row of the last vector equation is
simply an uncoupled first order linear ODE (of the form y Õ = di y + h(t)) for
the unknown yi = (P≠1x̨)i . So we simply solve the equations separately to
obtain P≠1x̨ then multiply on the left by P to obtain x̨(t).

I NOTE recall that when using this diagonalisation approach with homogeneous
linear systems of ODEs, we do not need to know P≠1. However, we DO need
to know P≠1 when solving the inhomogeneous system x̨ Õ = Ax̨ + g̨(t) - in
order to compute P≠1g̨(t).

125 / 131



Introduction
Analytical Solutions to Systems of First Order ODEs
Numerical Methods for Systems of First Order ODEs

Geometrical Study of Solutions to Systems of First Order ODEs
Appendix

Òæ EXAMPLE 15 Returning to EXAMPLE 2/9, we now solve the full
inhomogeneous system :
d
dt

Ë
x
y

È
=

Ë
4/3 ≠1

≠2/3 1

È Ë
x
y

È
+

5
2
3 et ≠ 1

≠ 1
3 et + 1

6
.

We saw in EXAMPLE 9 that

P =
Ë

1 3
1 ≠2

È
, P≠1 =

Ë
2/5 3/5
1/5 ≠1/5

È
, and D =

Ë 1
3 0
0 2

È
.

So we solve (P≠1x̨) Õ =
Ë 1

3 0
0 2

È
(P≠1x̨) +

Ë
2/5 3/5
1/5 ≠1/5

È 5
2
3 et ≠ 1

≠ 1
3 et + 1

6
∆

(P≠1x̨) Õ =
Ë 1

3 0
0 2

È
(P≠1x̨) +

5
1
15 et + 1

51
5 et ≠ 2

5

6
.

If, for simplicity, we let y̨ = P≠1x̨ , the first row says
y Õ

1 = 1
3 y1 + 1

15 et + 1
5 ∆ (e≠ 1

3 t y1(t))Õ = 1
15 e

2
3 t + 1

5 e≠ 1
3 t ∆

y1(t) = (P≠1x̨)1 =
1
10

et ≠
3
5

+ C1e
1
3 t , where C1 is an arbitrary constant.

And the second row says y Õ
2 = 2y2 + 1

5 et ≠ 2
5 ∆ (e≠2t y2)Õ = 1

5 e≠t ≠ 2
5 e≠2t ∆

y2(t) = (P≠1x̨)2 = ≠
1
5

et +
1
5

+ C2e2t , where C2 is an arbitrary constant.
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Òæ EXAMPLE 15 Returning to EXAMPLE 2/9, we now solve the full
inhomogeneous system :
d
dt

Ë
x
y

È
=

Ë
4/3 ≠1

≠2/3 1

È Ë
x
y

È
+

5
2
3 et ≠ 1

≠ 1
3 et + 1

6
.

We saw in EXAMPLE 9 that

P =
Ë

1 3
1 ≠2

È
, P≠1 =

Ë
2/5 3/5
1/5 ≠1/5

È
, and D =

Ë 1
3 0
0 2

È
.

So we solve (P≠1x̨) Õ =
Ë 1

3 0
0 2

È
(P≠1x̨) +

Ë
2/5 3/5
1/5 ≠1/5

È 5
2
3 et ≠ 1

≠ 1
3 et + 1

6
∆

(P≠1x̨) Õ =
Ë 1

3 0
0 2

È
(P≠1x̨) +

5
1
15 et + 1

51
5 et ≠ 2

5

6
.

If, for simplicity, we let y̨ = P≠1x̨ , the first row says
y Õ

1 = 1
3 y1 + 1

15 et + 1
5 ∆ (e≠ 1

3 t y1(t))Õ = 1
15 e

2
3 t + 1

5 e≠ 1
3 t ∆

y1(t) = (P≠1x̨)1 =
1
10

et ≠
3
5

+ C1e
1
3 t , where C1 is an arbitrary constant.

And the second row says y Õ
2 = 2y2 + 1

5 et ≠ 2
5 ∆ (e≠2t y2)Õ = 1

5 e≠t ≠ 2
5 e≠2t ∆

y2(t) = (P≠1x̨)2 = ≠
1
5

et +
1
5

+ C2e2t , where C2 is an arbitrary constant.
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Òæ So P≠1x̨ =

C
1
10 et ≠ 3

5 + C1e
1
3 t

≠ 1
5 et + 1

5 + C2e2t

D
so that

x̨ = P(P≠1 x̨) =
Ë

1 3
1 ≠2

ÈË
1
10 et ≠ 3

5 + C1e
1
3 t

≠ 1
5 et + 1

5 + C2e2t

È
=

C
1
10 et ≠ 3

5 + C1e
1
3 t ≠ 3

5 et + 3
5 + 3C2e2t

1
10 et ≠ 3

5 + C1e
1
3 t + 2

5 et ≠ 2
5 ≠ 3C2e2t

D
∆

x̨(t) =

C
≠ 1

2 et + C1e
1
3 t + 3C2e2t

1
2 et ≠ 1 + C1e

1
3 t ≠ 2C2e2t

D

Òæ We now use the initial conditions x̨(0) =
Ë

1
1

È
to get

C1 + 3C2 = 3/2
C1 ≠ 2C2 = 3/2

∆ C2 = 0, C1 = 3
2 . So the solution to the initial value problem is

x̨(t) =
5

≠ 1
2 et + 3

2 e
1
3 t

≠1 + 1
2 et + 3

2 e
1
3 t

6
, as expected.
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2. Method of Undetermined Coe�cients Approach to Solving x̨ Õ = Ax̨ + g̨(t)
(If pressed for time, you can ignore this is you have not seen the Method of Undetermined Coe�cients before for

solving constant coe�cient linear 2nd order inhomogeneous ODEs)

Òæ There isn’t much new here if you have seen the Method of Undetermined
Coe�cients for second order constant coe�cient linear ODEs. Basically, we can
find a particular solution to x̨ Õ = Ax̨ + g̨(t) in the special case where A is
constant and g̨(t) contains sines, cosines, polynomials, exponential functions, or
sums/products of these.

Òæ Again assume a solution x̨p(t) of the form of the various entries of g̨(t) with
undetermined coe�cients, substitute this assumption for x̨p(t) into
x̨ Õ = Ax̨ + g̨(t), and find out the values of those coe�cients.

Òæ Once we have a particular solution x̨p(t) to x̨ Õ = Ax̨ + g̨(t) and also know the
general solution of the HOMOGENEOUS system x̨ Õ = Ax̨ (the complementary
function) x̨c(t), then the GENERAL SOLUTION of x̨ Õ = Ax̨ + g̨(t) is simply

x̨p(t) + x̨c(t).

I NOTE that this is identical to how we use the Method of Undetermined
coe�cients to solve linear single ODEs such as ax ÕÕ + bx Õ + cx = g(t).
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Òæ EXAMPLE 16 We will return to EXAMPLEs 9 and 15 to solve

d
dt

Ë
x
y

È
=

Ë
4/3 ≠1

≠2/3 1

È Ë
x
y

È
+

5
2
3 et ≠ 1

≠ 1
3 et + 1

6
, BUT now using the

Method of Undetermined Coe�cients.

We already know, from EXAMPLE 9, the general solution of the homogeneous part of
this equation: x̨c(t) = B1

Ë
1
1

È
e

1
3 t + B2

Ë
3

≠2

È
e2t .

Now we find a particular integral by observing g̨(t) =
5

2
3 et ≠ 1

≠ 1
3 et + 1

6
and assuming

x̨p(t) =
Ë

aet + b
cet + d

È
.

x̨p Õ(t) =
Ë

aet

cet

È
, and substituting this into x̨ Õ = Ax̨ + g̨(t), we get

Ë
aet

cet

È
=

Ë
4/3 ≠1

≠2/3 1

È Ë
aet + b
cet + d

È
+

5
2
3 et ≠ 1

≠ 1
3 et + 1

6
=

5
4
3 aet + 4

3 b ≠ cet ≠ d
≠ 2

3 aet ≠ 2
3 b + cet + d

6
+

5
2
3 et ≠ 1

≠ 1
3 et + 1

6
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REMINDER: x̨c (t) = B1

Ë
1
1

È
e

1
3 t + B2

Ë
3

≠2

È
e2t and x̨p(t) =

Ë
aet + b
cet + d

È

This simplifies to
Ë

aet

cet

È
=

5
( 2

3 + 4
3 a ≠ c)et + 4

3 b ≠ d ≠ 1
(≠ 2

3 a + c ≠ 1
3 )et ≠ 2

3 b + d + 1

6
.

Equating the coe�cients of like terms on either side of the equations (and
simplifying), we conclude that

a ≠ 3c = ≠2

≠2a = 1 ∆ a = ≠ 1
2 and c = 1

2 . Also,

4b ≠ 3d = 3
≠2b + 3d = ≠3 ∆ b = 0 and d = ≠1 .

So x̨p(t) =
5

≠ 1
2 et

1
2 et ≠ 1

6
and the general solution to x̨ Õ = Ax̨ + g̨(t)is

5
≠ 1

2 et
1
2 et ≠ 1

6
+ B1

Ë
1
1

È
e

1
3 t + B2

Ë
3

≠2

È
e2t (as expected).
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Òæ FINAL NOTE: When solving x̨ Õ = Ax̨ + g̨(t) using
the Method of Undetermined Coe�cients, there is only
one case in which the approach di�ers slightly from that
used in the solving of equations like
ax ÕÕ + bx Õ + cx = g(t).

 If the initial assumed form of the particular solution
x̨p(t) = ąe⁄t , where ⁄ is an eigenvalue of A (so that the
term ąe⁄t already appears in the complementary
function), then instead of adjusting the assumption to
x̨p(t) = tąe⁄t , also include lower order terms in the
assumption: x̨p(t) = tąe⁄t + b̨e⁄t , where ą and b̨ are
constant vectors whose entries are to be determined by
substitution into the ODE system x̨ Õ = Ax̨ + g̨(t).
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