
Mathematics for the Life Sciences (MATH1134) - Tutorial Sheet 2

This tutorial complements the material covered in Lecture 2.

1. Solve as many of the following ODEs/IVPs as you need to be comfortable with the pro-
cess. More examples and exercises are available in standard introductory differential equa-
tions books, such as Elementary Differential Equations by Boyce and Diprima (Wiley):

(a) t
dy

dt
− 3y = t2 + t4, y(1) = 5 (b) x

dx

dt
− sin(x)

dx

dt
= 2et, x(0) = 0

(c) x
dy

dx
− 3y = 0, y(1) = 8 (x ≥ 1) (d) x

dy

dx
= 6x− 3xy, y(1) = 1 (x ≥ 1)

(e)
x

y

dy

dx
= 1 + y (f) t

dy

dt
+ (t + 1)y = t

(g)
dx

dt
e3x = 12e2xt2 − 16e2x (h) et

(
8− dy

dt

)
= 17

2. Find all equilibrium solutions of

dy

dt
= (y + 1)2(y2 − 1)

and use calculus to classify each equilibrium solution as stable, unstable, or semistable.

3. For the initial value problem

dy

dt
= 10y2(y2 − 1), y(0) = y0 (where y0 ∈ R),

determine the value of all equilibrium points and state, with reason, whether each equilibrium
point is stable, unstable, or semistable.

4. This question requires the plotting of direction fields for first order ODEs of the form dy
dt

=
f(t, y), which you can do using the website given in the class notes.

However, for us it is preferable to plot the direction fields using MATLAB. Do the following:

(a) Go to the class Moodle page and download dirfield arrow funchandle.m and
dirfield funchandle.m from the Matlab Files folder in the section containing Lecture 2.
(These files are slight modifications of dirfield.m from the website
http://terpconnect.umd.edu/˜petersd/246/dirfield.m, which work with function han-
dles instead of the soon-to-be-obsolete-from-MATLAB inline functions).

(b) Look at the (small) files dirfield arrow funchandle.m and dirfield funchandle.m;
they are function M files which makes use of the MATLAB function quiver() to generate
the direction fields.

1



(c) To use dirfield arrow funchandle.m or dirfield funchandle.m, you will first have
to write a function handle for the right-hand-side function of the differential equation,
dy
dt

= f(t, y). You can do this on the command line or in a script M-file which later calls the
function dirfield arrow funchandle or dirfield funchandle. NOTE that the function
handles used in dirfield arrow funchandle.m and dirfield funchandle.m MUST be
vectorised (so use .∗ instead of ∗ etc.). For example

f = @(t,y) -y .∧ 2 + t./2

for dy
dt

= −y2 + t
2
.

(d) You then need to define a vector of t values and a vector of y values which determine the
rectangular grid on which you wish to see the direction field. For example

t = 0:0.2:3;

y = -3:0.4:3;

would cause the direction field to be plotted in the rectangle 0 ≤ t ≤ 3 and −3 ≤ y ≤ 3
on the 16× 16 grid determined by ∆t = 0.2 and ∆y = 0.4.

(e) Finally, the function dirfield arrow funchandle() or dirfield funchandle() should be
called as follows:

dirfield arrow funchandle(f, t, y)

or

dirfield funchandle(f, t, y)

The first argument should be the name of the function handle, the second argument the
vector of t values, and the third argument the vector of y values.

(f) You should also read the comments at the top of the files dirfield arrow funchandle.m
and dirfield arrow funchandle.m for more about how to use them.

In the following, plot the requested direction field on the suggested rectangle and write down
any equilibrium solutions you can identify, also stating whether they are stable, unstable, or
semistable.

(i)
dy

dt
= 2y − 30 on the rectangle 0 ≤ t ≤ 10, 0 ≤ y ≤ 30.

(ii)
dy

dt
= y2(y + 4) on the rectangle 0 ≤ t ≤ 10, −5 ≤ y ≤ 5.

(iii)
dy

dt
= y − 2t on the rectangle 0 ≤ t ≤ 10, 0 ≤ y ≤ 25.

5. Plot a direction field for the ODE from Question 2,
dy

dt
= (y + 1)2(y2 − 1), on an appropriate

rectangle, and thus verify the existence and classification of the equilibrium solutions obtained
in your answers to Question 2.

6. Write a MATLAB program which implements Euler’s method, Heun’s method, and the fourth
order Runge-Kutta (RK4) method in the same M-file. Your program should be written to solve
the generic first order IVP

dy

dt
= f(t, y), t ∈ [t0, T ], y(t0) = y0

2



where values such as t0, T , the number of steps N or step-size h = (T − t0)/N are either set
in the program or input by the user. It is recommended that you write f(t, y) as a function
handle at the top of your M-file so that it is self contained (ask me if you want to know how you
can write your program so that the function handle is input by the user). Give your program
the following features:

(a) The user selects whether to do all three methods at once or just one of the methods, or,
since we will mainly use Heun’s method and RK4, whether to only do those two methods.
As an example, the user could be asked to input 1 to do Euler’s method only, 2 to do
Heun’s method only, 3 to do the RK4 method only, 4 to do all three methods, or 5 to do
just Heun’s and RK4.

(b) At a minimum, for each approximation method the output should include a table of the
time step number, the time, the approximation Yi at that time, the exact value of the
solution function at that time (just put in a dummy function and ignore this and the next
column if the exact solution is not known), and the error at that time (like the examples
done in class).

(c) Also produce a plot of the the approximate and exact solution (if known) on the same
axes.

Try your program on the example done in the lecture (EXAMPLE 10) as well as some of the
IVPs from Question 1.

NOTE shortly after Lecture 2 you will be provided with a program which does
what is requested above but it is good practice to try to write one yourself first.

In particular, see the Matlab Files folder under Lecture 2 on the class Moodle
page where EulerHeunRK4.m is a script M file which does what is requested in this
question.

For those students who want a more self-contained program (similar to
dirfield arrow funchandle, discussed in Question 4 of this tutorial), I also include
EulerHeunRK4 function.m which is a function M file. Type EulerHeunRK4 function

and then hit Enter in the command window to see instructions on how to use that
function. Its use is similar to in-built Matlab functions like ode45 - which are dis-
cussed in Tutorial 3. A typical use of EulerHeunRK4 function would be
>> Y = EulerHeunRK4 function(f, t, y0, g)

where f is a function handle for the right side of the ODE dy
dt

= f(t, y), t is the
vector of t values at which y is to be approximated, y0 is the initial value of the
solution function y(t), g is a function handle for the true solution function y(t), and
Y would be either a vector or matrix in which the approximate solution(s) is/are
stored.
Alternatively, if one does not know the true solution and only wants the approxi-
mations, then
>> Y = EulerHeunRK4 function(f, t, y0)

will also work.

3


