
Mathematics for the Life Sciences (MATH1134) - Tutorial Sheet 3

This tutorial complements the material covered in Lecture 3.

USA POPULATION DATA 1790 - 2010

YEAR POPULATION YEAR POPULATION YEAR POPULATION
1790 3,929,214 1870 38,558,371 1950 151,325,798
1800 5,308,483 1880 50,189,209 1960 179,323,175
1810 7,239,881 1890 62,979,766 1970 203,211,926
1820 9,638,453 1900 76,212,168 1980 226,545,805
1830 12,866,020 1910 92,228,496 1990 248,709,873
1840 17,069,453 1920 106,021,537 2000 281,421,906
1850 23,191,876 1930 123,202,624 2010 308,745,538
1860 31,443,321 1940 132,164,569 2020 ???

1. Consider the USA population data table above.

(a) Which 10 year period between 1790 and 1840 has the highest per capita population growth
rate and what is that rate?

(b) Which 10 year period between 1790 and 1840 has the highest population growth and what
is that growth in population?

(c) Use the per capita population growth rate, r, from the years 1790 to 1800 and assume
exponential population growth (so N(t) = N0e

r(t−t0)) to predict what the population
would be in 1810 (why did I not ask you to predict the population in 1800???), 1820, 1830,
and 1840. Given the actual population from the table, find the relative errors. NOTE for
accurate results, calculate r to at least 16 decimal places - meaning, use format long in
Matlab.

(d) Show that if there is exponential growth of a population governed by N(t) = N0e
r(t−t0),

then the doubling time of the population is always ln 2
r

.

ASIDE 1: if r < 0 and the equation N(t) = N0e
r(t−t0) can represent radioactive decay, the

equivalent notion of “doubling time” is called “half-life” and is useful for carbon dating.

ASIDE 2: This is not too hard to do if you assume t0 = 0 and you just want to see how
long it takes for the population to become 2N0. You have to think more carefully about what
the term “doubling time” means if you consider the more general case where t0 may not
be 0 and you have to show the result is always true, not just when going from a population
of N0 to 2N0.

(a) Since N(t) = N0e
r(t−t0), to find r for any of the 10 year periods between popu-

lation listings, we would take the log of both sides of that equation and solve
for r:

r =
ln (N(t)/N0)

t− t0
=

ln (N(t)/N0)

10
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since the r is only for each 10 year period. This is easy to compute - for
example, at t = 1800 the formula is

r =
ln(5308483/3929214)

10
= 0.030087

If you wanted to automate the calculations of these r values in Matlab, then
you could store the 6 population totals for the years 1790, 1800, 1810, 1820,
1830, and 1840 in a vector, say POP, and then write a for loop for k = 1 : 5
which printed out log(POP (k + 1)/POP (k))/10.

Anyway, the highest 10-yearly net per capita population growth rate in that
period is 0.031030 between the years 1800 and 1810.

(b) 4203433 from 1830 to 1840.

(c) Use r = 0.0300866701176633. Of course you would get 5308483 - so no error -
if you used this r to calculate the population in 1800. Here are the other
calculated populations and the relative errors:

Year (t) N(t) Relative Error
1810 7, 171, 916 0.00938762013558719
1820 9, 689, 468 0.00529284873639788
1830 13, 090, 754 0.0174672825877710
1840 17, 685, 992 0.0361194329793176

(d) Assuming we know the population at some time T1, N(T1) = N0e
r(T1−t0). We

then want to find the time T2 such that the population has doubled, so that
T2 − T1 is the doubling time: i.e, we want T2 such that

N(T2) = 2N(T1) ⇒ N0e
r(T2−t0) = 2N0e

r(T1−t0)

⇒ er(T2−T1) = 2 ⇒ T2 − T1 =
ln 2

r
= the doubling time.

2. Solve the Logistic differential equation,

dP

dt
= rP

(
1− P

K

)
with initial condition P (0) = P0,

where r (the relative growth rate) and K (the carrying capacity) are constants.

Rewrite as
1

P
(
1− P

K

) dP = r dt. (1)

• Before, integrating, we simplify the left hand side integrand to K
P (K−P )

. Now
we use partial fraction decomposition:

– We seek constants a and b so that K
P (K−P )

= a
P

+ b
K−P ⇒ K = a(K − P ) + bP .

– Find a and b by matching like terms or picking appropriate values for P .

– For example, P = 0⇒ K = aK ⇒ a = 1.

– And picking P = K ⇒ K = bK ⇒ b = 1.
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• So Equation 1 becomes
(

1

P
+

1

K − P

)
dP = r dt.

• Integrating both sides gives

ln |P | − ln |K − P | = rt+ C ⇒ ln
∣∣∣∣ P

K − P

∣∣∣∣ = rt+ C ⇒

ln
∣∣∣∣K − PP

∣∣∣∣ = −rt− C ⇒
∣∣∣∣K − PP

∣∣∣∣ = e−rt−C = e−Ce−rt ⇒

K − P
P

= Ae−rt

where A = ±e−C is an abritrary constant.

Solving for P we get

K

P
− 1 = Ae−rt ⇒ P

K
=

1

1 + Ae−rt
⇒

P (t) =
K

1 + Ae−rt

• So if we add the initial condition P (0) = P0, the A =
K

P0

− 1 so that

P (t) =
K

1 +
(

K
P0

− 1
)
e−rt

3. For this problem, use the USA population data at the start of this tutorial. Use the intrinsic
growth rate from Example 2 of the Lecture 3 notes, r = 0.0315482567314 and either the
Heun’s method or fourth order Runge-Kutta method programs to explore the behaviour of
numerical solutions to the Logistic differential equation starting in 1790, 1800, 1810, 1820,
1830, and 1840. In each case, use the given initial population at those times and an appropriate
∆t to see how well the approximation method matches the actual yearly population data for
each 10 year period until 2010.

4. Repeat Example 2 in the Lecture 2 notes but basing the parameters on another set of years:
Use the data from the USA population table in the years 1900, 1940, and 1980 to determine a
Logistic growth population model N(t) which is exact for those three years. Use this model
to predict the populations in 1960, 2000, and 2010 and comment on the accuracy. You can
use a numerical approach with Heun’s or the fourth order Runge-Kutta method if you prefer
(provided, of course, you have found the intrinsic growth rate r and the carrying capacity K).

5. This is essentially taken from Essential Mathematical Biology by Nicholas Britton:

Here is a quick introduction to the ecosystems or resource-based approach to modelling and its
application to an alternative derivation of the Logistic differential equation.
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Assume the per capita growth rate of a population depends on some resource. Furthermore,
assume this resource exists in two states: free (i.e., available for use by members of the popu-
lation) or bound (i.e., already in use). If we let R be the density of the free resource then the
rate of change of the population

dN

dt
= G(R)N

for some function G of the free resource density.

Let the resource be abiotic (non-biological), and therefore cannot be born or die. (The archety-
pal example in the ecosystems approach is a mineral resource, but another possibility is some-
thing like nest sites.) Next assume the conservation law that the total amount of resource,
free and bound, is a constant C > 0, and let the amount of bound resources depend on the
population. Thus

R = C −H(N).

In modelling G(R) and H(N), note that they both must increase with their arguments. And
since logically if there is no density of free resource the growth rate must be negative, then

G(0) < 0.

So a simple linear form for G would be

G(R) = αR− β

with α > 0 and β > 0. Similarly, if the population is 0 there can be no bound resource so
H(0) = 0 and so a simple linear form for H is

H(N) = γN

with γ > 0.

(a) Show that this ecosystems modelling approach still leads to the Logistic differential equa-
tion.

(b) Give expressions for the Malthusian parameter r and the carrying capacity K in terms of
the parameters in the ecosystems modelling approach.

(c) What happens if the total amount of resource C is insufficient?

(d) Give an advantage of the ecosystems approach and the empirical approach used in the
Lecture 3 notes to modelling limited growth.

(a) A straightforward substitution shows this.

(b) r = αC and K = αC−β
αγ

.

(c) If r < 0 or equivalently C < β
α

then N(t)→ 0 as t→∞.

(d) The empirical approach from the Lecture 3 notes is probably more intutitive
and simpler than the ecosystems approach. The second approach lends some
useful insight and allows us to test some theories fairly easily such as the effect
of a reduction in C on both the growth rate and carrying capacity.
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6. Consider the differential equation which models metapopulations,

dp

dt
= cp(t)(1− p(t))− ep(t),

where p(t) = the fraction of sites occupied at time t, e is a local extinction rate, and c is a
colonisation rate. Show that this is a Logistic differential equation with intrinsic growth rate

r = c− e

and carrying capacity

K = 1− e

c
.

This is a fairly routine calculation so I will leave it to you.

7. (Essentially a slightly modified version of Exercise 4.1 of A Primer on Mathematical Models

in Biology by Lee Segel and Leah Edelstein-Keshet)

Consider the Malthusian population growth initial value problem

dN

dt
= rN, N(0) = N0, r > 0.

(a) Let y(t) = N(t)
N0

and rewrite the differential equation and initial conditions in terms of this
dimensionless y(t).

(b) What are the units of r?

(c) What is the doubling time of the population?

(d) Define a dimensionless time τ such that this initial value problem is transformed into

dy

dτ
= y, y(0) = 1.

Quite similar to the section on Nondimensionalisation of the Logistic DE in the
Lecture 3 notes.

(a) If y(t) = 1
N0
N(t) then dy

dt
= 1

N0

dN
dt
⇒ dN

dt
= N0

dy
dt

so that the original Malthusian

ODE dN
dt

= rN becomes

N0
dy

dt
= rN ⇒ dy

dt
= r

N

N0

OR
dy

dt
= ry.

(b)

(c)

(d) τ = tr is dimensionless. By the chain rule,

dy

dt
=

(
dt

dτ

)(
dτ

dt

)
=

dy

dτ
r

So the differential equation becomes r
dy

dτ
= ry or

dy

dτ
= y.
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The initial condition N(0) = N0 becomes y(0) =
N(0)

N0

=
N0

N0

= 1 so that

y(0) = 1.

8. In addition to the approximate root finding methods and approximate IVP solvers mentioned
in Lecture 2 and Tutorial 2, Matlab has some corresponding in-built functions which some
of you might find easier to use:

(a) fzero - used for approximating roots of functions of one variable. For example, on page
25 of the Lecture 2 notes, in the equation involving r one could bring everything over to
one side of the equation then define a function M file or function handle (carefully!) for
that expression and then use fzero to find the solution. Type

help fzero

in the Matlab command window and see

http://uk.mathworks.com/help/matlab/ref/fzero.html

for more.

(b) roots - used for approximating roots of polynomials. Type

help fzero

in the Matlab command window and see

http://uk.mathworks.com/help/matlab/ref/roots.html

for more.

For example, to find the roots of

x2 − 10x+ 25, type roots([1,-10,25]). The answer is 5 (repeated);

x2 − 1, type roots([1,0,-1]). The answer is −1, 1;

x3 − 8x2 + 37x− 50, type roots([1,-8,37,-50]). The answer is 3 + 4i, 3− 4i, 2.

(c) fsolve - used for approximating roots of functions of more than 1 variable, i.e., solving
~F (~x) = ~0. For example, to solve the system given in Appendix A of Lecture 3, you could

first define the function handle for the vector field ~F as follows:

F = @(x) [3 ∗ x(1) − cos(x(2) ∗ x(3)) − 1/2;x(1)2 − 81 ∗ (x(2) + 0.1)2 + sin(x(3)) +
1.06; exp(−x(1) ∗ x(2)) + 20 ∗ x(3) + (10 ∗ pi− 3)/3];

Then type

fsolve(F, [0.1; 0.1; -0.1])

to get a vector of approximate solutions. Type

help fsolve

in the Matlab command window and see

http://uk.mathworks.com/help/optim/ug/fsolve.html

for more.

(d) ode45 and several other related ODE solvers - used to solve initial value problems. For
example, to do EXAMPLE 10 from Lecture 2 using h = 0.2 with an in-built fourth order
Runge-Kutta solver, we could first define the function handle for the right hand side of
the ODE:

f = @(t,y) −y/(2*t)
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then type

[T,Y] = ode45(f, 1:0.2:2, 12)

For more on this you can type help ode45 and also visit the page

http://uk.mathworks.com/help/matlab/ref/ode45.html

Importantly, we will be able to use these ODE solver commands with systems of ODEs
also - see Lecture 4 and later.
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