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,! We now turn our attention to biological systems modelled by
systems of di↵erential equations. In particular, we look at the
population dynamics (recalling from Lecture 3 that this term
encompasses a wide range of phenomena) of interacting species.

,! I really want to emphasise, however, that at this stage you have the
tools from Lecture 4 to deal with anything (biological or otherwise)
modelled by a system of ODEs. It’s important that you realise this.

,! We will classify interaction between two species according to how

each of the species benefits in relation to the other (+ versus �):
1. Predation or Parisitism : (+, �)
2. Competition: (�, �)

3. Mutualism: (+, +)

I In this lecture, we will focus on the first two categories.

I Since some models we consider will be of two species, it is important to note

than unless modelling a closed system with two species, a two-species model

will typically not fully reflect the complex relationships between multiple species

in nature. However it is an important first step to understanding these.
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Predation: (+, �)

,! First note that parisitism and predation are essentially
equivalent, but the presence of an annual cycle for most
host-parasite relationships caused by what are typically
discrete, non-overlapping generations, means that
parisitism is typically modelled by systems of di↵erence
equations (discrete).

I In contrast, predator-prey relationships do not have that
discrete structure and thus predation is typically modelled
by systems of ODEs (continuous).

 We will therefore only discuss predation.
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The Predator-Prey/Lotka-Volterra Equations

,! We begin with the classic example, the Lotka-Volterra or
Predator-Prey system of 2 equations.

I Background: Records of Lynx (predator) and Hare (prey) populations kept

since the 1840s by the Hudson Bay Company in Canada have shown regular

cyclical rises and falls in the population of the species. More recently, in the

1920’s Vito Volterra, a mathematician specialising in di↵erential and integral

equations, developed the mathematical model for this behaviour in response to

a question by his future son-in-law (a marine biologist) about similar cyclical

behaviour he had observed in predator and prey fish species populations in the

Mediterranean. At about the same time, independently, Alfred Lotka developed

the same equations.

I The Predator-Prey equations are more focussed on describing the
qualitative behaviour of predator versus prey population dynamics
than on providing specific predictions of populations (there are
refinements of this model which better serve that latter purpose).
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,! Based on observing the behaviour of predator-prey population
trends, here are the assumptions that went into that classical model:

I The prey species grows in an unlimited way at a rate proportional to the
current population if there are no predators.

I The predator species dies out a rate proportional to its current
population if there are no prey.

I The number of encounters between the predator and prey is proportional
to the product of their populations.

I An encounter between a predator and a prey typically benefits the growth

of the predator population and inhibits the growth of the prey population.

,! Using these assumptions, let x(t) be the prey population and y(t)
be the predator population. The equations are:

dx

dt

= ax � bxy
dy

dt

= �cy + dxy

where a, b, c , d are positive constants.
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REMINDER:
dx

dt

= ax � bxy

dy

dt

= �cy + dxy

7! This is a nonlinear, autonomous system of ODEs.

� a is the net growth rate of the prey population, so that in the absence of prey
we just get the Malthusian equation for the prey. Similarly, c is the net
death/mortality rate of the predator, and not surprisingly in the absence of prey
the predator dies out.

I The form of the encounter rate comes from the law of mass action, which in its
original chemical context says that:
The rate of molecular collisions/reaction of two chemical species

in a dilute gas or solution is proportional to the product of

their two concentrations.

I In its original chemical context, the law of mass action is used to model the
changing concentrations of chemical substances in biological systems in the
field of biochemical kinetics, of which Michaelis-Menten kinetics (and the
associated system of ODEs) is a famous example. This key biochemical law is
however also used in other contexts such as disease modelling and population
interactions to derive models of these phenomena, although in these other cases
it is often only an approximation of what really happens.

,! We will begin by analysing the steady states of the system.
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REMINDER:
dx

dt

= ax � bxy

dy

dt

= �cy + dxy

,! It is relatively easy to determine that the two steady states for the
Lotka-Volterra system of equations are:

~ss1 = (0, 0) and ~ss2 =
⇣ c

d
,
a

b

⌘
.

I The Jacobian matrix (also called the community matrix, in the
context of ecology) of the right hand side vector function for the

ODE system is ( , ) =

✓
� �

�

◆

I Thus at the two steady states the Jacobian matrix is

J(0, 0) =

✓
a 0
0 �c

◆
and J

⇣ c

d
,
a

b

⌘
=

✓
0 � bc

d

da

b

0

◆
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REMINDER: J(0, 0) =

✓
a 0
0 �c

◆
and J

✓
c

d

,
a

b

◆
=

 
0 � bc

d

da

b

0

!

,! It is clear that for diagonal matrix J(0, 0) the eigenvalues are

�1 = > 0, �2 = � < 0

so that (0, 0) is an

(unstable) saddle
point

of the system.

,! Meanwhile, the eigenvalues for J
�
c

d

, a

b

�
are obtained by solving

�2 + �bac◆d

⇢⇢bd
= 0 ) �1,2 = ±p

.

So at this stage we cannot be sure what type of steady state is at�
c

d

, a

b

�
. It might be a centre as suggested by the eigenvalues, but

because this is a nonlinear system of ODEs it may also be a spiral
point (asymptotically stable or unstable).

I We will later see by analytically solving the system of ODEs and by
looking at direction fields and numerical solutions that there is in
fact a (stable) centre at

�
c

d

, a

b

�
.

10 / 45



Introduction
Predation: (+, �)

Competition: (�, �)
The Predator-Prey Equations

REMINDER: J(0, 0) =

✓
a 0
0 �c

◆
) �1,2 = a,�c and J

✓
c

d

,
a

b

◆
=

 
0 � bc

d

da

b

0

!
) �1,2 = ±

p
ac i

,! A few observations based on this model:
I Counterintuitively, the non-zero steady state of the prey,

c

d

, depends on

the parameters associated with the predator, and is independent of the
prey’s own growth or mortality rate.

I Similarly, the non-zero steady state of the predator,
a

b

, depends on the

parameters associated with the prey, and is independent of the predator’s
own growth or mortality rate.

I The nullclines are the horizontal line y = a/b and the vertical line
x = c/d .

I We now have almost enough information to sketch a phase plane plot.

We could, for example, now just evaluate and plot the vector✓
,

◆
at four points in the four regions of the first quadrant

delineated by the nullclines.
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,! Instead here is a direction field plot for the case = 0.05,

=
100

= 0.0005, = 0.02, and =
400

= 0.00005, with

non-zero steady state (400, 100), suggesting that it is a centre.
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,! EXAMPLE 1 We look at the solution to a predator prey problem in
which the predators are foxes and the prey are rabbits. The
following parameters will be used:

a = 0.05, b =
a

100
= 0.0005, c = 0.02, and d =

c

400
= 0.00005.

t 2 [0, 1000], x(0) = 1500, y(0) = 100.

I We will solve this using a fourth order Runge-Kutta method. Note
the cyclical time plots and the clear identification of the non-zero

steady state,

✓
,

◆
= (400, 100), as a centre in the phase

plane plot.
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,! Solution of a fox rabbit predator prey problem, with 100 foxes and
1500 rabbits at the start. Note the cyclical nature of the time plots
and the confirmation in the phase plane plot that the non-zero
steady state is a centre. That steady state, 400 rabbits and 100
foxes, is indicated by a red star, *, on the phase plane plot.
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The Analytic Solution of the Predator-Prey System

,! We will use the Lotka-Volterra ODE system,
dx

dt

= ax � bxy
dy

dt

= �cy + dxy
,

to show that it is sometimes possible to solve nonlinear systems;
The trick is to convert it into a single di↵erential equation in terms

of , and solve this equation in the phase space.

I As in Lecture 4, we use the chain rule to write

dy

dx
=

dy/dt

dx/dt
=

�cy + dxy

ax � bxy
=

y(dx � c)

x(a� by)
.

This is a separable di↵erential equation:

a� by

y
dy =

dx � c

x
dx )

Z ✓
a

y
� b

◆
dy =

Z ⇣
d � c

x

⌘
dx
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REMINDER:
R ⇣

a

y

� b

⌘
dy =

R ⇣
d � c

x

⌘
dx

,! So, where K is an arbitrary constant,

ln( )� = � ln( )+ ) ln( ) + ln( ) � � = .

I While this solution is not explicit, we could plot it for a
given K (i.e, initial condition) by picking values of one
variable and solving the resulting nonlinear equation
(using an algorithm like the Bisection method or

Newton’s method or Matlab’s fzero()) to find the
corresponding value(s) of the other variable.

� This technique of elminating the time variable and solving
the equation as a single ODE in phase space is one
possible way to find the solution of a nonlinear system of
ODEs.
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Nondimensionalisation of the Predator-Prey Equations

,! I will use the Lotka-Volterra equations to demonstrate a somewhat
more systematic way (compared to how this was done in Lecture
3) to approach non-dimensionalisation of a set of equations.

 This is a variation on the Method of Undetermined Coe�cients:
1. First identify the variables (dependent, independent) you wish to

non-dimensionalise and pick corresponding names for the
non-dimensionalised form of those variables.

2. Set each of the variables to be non-dimensionalised equal to an
undetermined coe�cient multiplied by the non-dimensional name of that
variable.

3. Rewrite the di↵erential equation(s) in terms of these new dimensionless
variables. NOTE: often the chain rule is needed here.

4. Select appropriate definitions for the undetermined coe�cients from
STEP 2 so that the equation(s) is (are) as simple as possible. NOTE
there are usually many possible ways of defining these undetermined
coe�cients which result in simplified dimensionless equation(s).

5. See if any further simplifications are possible. For example, redefining

common ratios as new parameters.
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REMINDER:
= �
= � +

We will go through those five steps for the Lotka-Volterra equations:

1. We will non-dimensionalise x(t) and y(t) - the prey and predator
(respectively) populations at time t, as well as the independent
variable t. The new variables will be called u, v and ⌧ respectively.

2. Let ( ) = 1 , ( ) = 2 , and = 3⌧ , where e1, e2, and
e3 are the three undetermined coe�cients to be found.

NOTE: if we take the dimension of population measure to be P ,
then [e1] = [e2] = P and [e3] = T .

3. Using the chain rule twice,

dx

dt
=

dx

du

✓
du

dt

◆
=

dx

du

✓
du

d⌧

d⌧

dt

◆
= e1

du

d⌧

1

e3
=

✓
e1
e3

◆
du

d⌧
.

So

✓
e1
e3

◆
du

d⌧
= a(e1u)�b(e1u)(e2v) ) du

d⌧
= ae3u�be2e3uv
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REMINDER:
dx

dt

= ax � bxy

dy

dt

= �cy + dxy

, x(t) = e1u, y(t) = e2v, and t = e3⌧ )
du

d⌧
= ae3u � be2e3uv

3. (continued) Similarly,

dy

dt
=

dy

dv

✓
dv

dt

◆
=

dy

dv

✓
dv

d⌧

d⌧

dt

◆
= e2

dv

d⌧

1

e3
=

✓
e2
e3

◆
dv

d⌧
.

So

✓
e2
e3

◆
dv

d⌧
= �c(e2v)+d(e1u)(e2v) ) dv

d⌧
= �ce3v+de1e3uv .

So the new system of ODEs is

⌧
= 3 � 2 3 ,

⌧
= � 3 + 1 3 .
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REMINDER:
du

d⌧
= ae3u � be2e3uv,

dv

d⌧
= �ce3v + de1e3uv

4. Focussing on simplifying the first equation, one possibility is to let

e3 =
1

a

() ⌧ = at) then to get be2e3 = 1, let e2 =
a

b

() v =
b

a

y).

The equations then become

du

d⌧
= u � uv ,

dv

d⌧
= �

c

a

v +
d

a

e1uv .

The “logical” choice then is to let e1 =
a

d

() u =
d

a

x) so that

⌧
= � ,

⌧
= � + ,

and ↵ = ( this is step 5) is now the ONLY parameter (compared to 4

originally) in the system of ODEs.

,! The system of equations is now
du

d⌧
= u � uv ,

dv

d⌧
= �↵v + uv .

I Obviously this simplified, dimensionless system is easier to analyse than the
original Predator-Prey equations.
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A Slight Modification to the Predator-Prey Equations

,! EXAMPLE 2 : We will make the assumption that the prey
population now follows the more realistic Logistic ODE in the
absence of the predator. Thus, where K is the prey carrying
capacity in the absence of a predator, the equations become

dx

dt

= ax
�
1� x

K

�
� bxy

dy

dt

= �cy + dxy
.

• The steady states are now

the solutions to

ax
⇣
1� x

K

⌘
�bxy = 0 ) ax

⇣
1� x

K

⌘
= bxy and �cy+dxy = 0 ) y(dx�c) = 0.

The last equation gives y = 0 or x = c/d . First, if y = 0 then
plugging this into the dx/dt equation we x = 0 or x = K . Thus

(0, 0) and (K , 0) are two steady states, but we ignore them since

they are not really biologically relevant.
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,! The only biologically relevant steady state is

when x = c/d . We
plug this into the first (dx/dt) equation to get

ac

d

⇣
1� c

dK

⌘
= b

c

d
y ) ac

⇣
1� c

dK

⌘
= bcy )

y =
a

b

⇣
1� c

dK

⌘
=

a

b
� ac

bdK
.

Thus the only biologically relevant steady state is
✓

, �
◆
.

? NOTE how this is like the biologically relevant steady state for the

original Lotka-Volterra equations,
⇣ c

d
,

a

b

⌘
, but with a decrease

in the predator population by
ac

bdK
.
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,! Here is a direction field plot for the case = 0.05, =
100

= 0.0005,

= 0.02, =
400

= 0.00005, and = 2000 with non-zero steady state

(400, 80), suggesting it might an asymptotically stable spiral point (although
an argument could also be made for it being a “centre”).
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,! Solution of a fox-rabbit modified predator prey problem (with
Logistic prey equation when y = 0, and with K = 2000), with 100
foxes and 1500 rabbits at the start. Note the diminishing oscillatory
nature of both time plots and the confirmation in the phase plane
plot that the non-zero steady state is an asymptotically stable
spiral. That steady state, 400 rabbits and 80 foxes, is indicated by
a red star, *, on the phase plane plot. Compare to the earlier
graphs in EXAMPLE 1 in which the unmodified Predator-Prey
equations were solved instead.
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,! More formally, the Jacobian for the modified Predator-Prey

equations,
dx

dt

= ax
�
1� x

K

�
� bxy

dy

dt

= �cy + dxy
, is

J(x , y) =

✓
a� 2ax

K

� by �bx
dy dx � c

◆

I So

J
⇣ c

d
,
a

b
� ac

bdK

⌘
=

✓
a� 2ac

dK

� a+ ac

dK

� bc

d

da

b

� ac

bK

c � c

◆
=

✓
� ac

dK

� bc

d

daK�ac

bK

0

◆
.

I The eigenvalues are

the solutions � to

��
⇣
� ac

dK
� �

⌘
+
cadK � ac2

dK
= 0 ) �2+

ac

dK
�+

cadK � ac2

dK
= 0.

) dK�2+ac�+(acdK�ac2) = 0 ) � =
�ac ±

p
a2c2 � 4acd2K 2 + 4ac2dK

2dK
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REMINDER: Eigenvalues � =
�ac ±

p
a

2
c

2 � 4acd2K2 + 4ac2dK

2dK

,! The discriminant can be simplified to

ac(ac � 4d2K 2 + 4cdK ) = ac(ac + 4Kd [c � dK ]).

I First note for the dy/dt steady state, a

b

� ac

bdK

= a

b

� a

b

�
c

dK

�
, to be

positive (and hence biologically relevant), we require that
1 > c

dK

) dK > c ) 0 > � . Thus if the dy/dt steady
state, a

b

� ac

bdK

, is a positive number, the discrimnant is always
< a2c2 hence each eigenvalue would be negative and the steady
state would be an asymptotically stable node.

I If, on the other hand, as in the example phase plane plots a few
slides back, we have < 4 2 2 � 4 so that the discriminant
is negative, then the steady state is an asymptotically stable spiral.
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,! Thus we see that a minor change in the Predator-Prey equations
results in a very dramatic change in the behaviour of the solutions.
More generally, in the modified equation depending on the choice of
parameters the steady state could be an asymptotically stable node
or an asymptotically stable spiral point.

I The stable centre steady state for the Lotka-Volterra equations is
therefore not structurally stable in that a tiny perturbation of the
equation results in a qualitatively di↵erent solution behaviour. This
is one criticism that has been levelled at the Lotka-Volterra
equations and means they must be used with great care if one
wishes to get accurate predictions of predator-prey behaviour.

I Thus there are many variations of the Lotka-Volterra equations
which are geared towards producing more realistic models.

I Nevertheless, the Lotka-Volterra equations are a major contributor
to the growth of mathematical ecology and serve the purpose of
giving good qualitative information about simplified predator-prey
interactions which can then be further refined.
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Other Variations on/Alternatives to the Predator-Prey Equations

,! There are many possible variations of the Predator-Prey equations
in which more realistic assumptions are made (for example,
removing the assumption that a, b, c , and d are constants. There
are also alternative predator-prey models.

There are many sources for reading more on these, for example:

I S.A. Levin, editor. Frontiers in Mathematical Biology,
volume 100 of Lect. Notes in Biomathematics.
Springer-Verlag, Berlin-Heidelberg-New York, 1994.

I R.M. Nisbet and W.S.C. Gurney. Modelling Fluctuating
Populations. The Blackburn Press, New Jersey, 2004.

I The Arditi-Ginzburg equations - an alternative to the
Lotka-Volterra predator-prey model. For an
introduction see
https://en.wikipedia.org/wiki/Arditi-Ginzburg equations
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,! The principle of competitive exclusion or Gause’s law (of
competitive exclusion) - named after Russian biologist Georgy
Gause - says essentially that if two (non-predator-prey) species live
in the same area and share the same basic requirements1, then they
will compete for resources, habitat, territory, etc., and this
competition will lead to the extinction of one of the species. This is
a phenomenon that has often been observed in nature.

,! However, what is very notable about Gause’s law is that it is
sometimes not true. Thus when we encounter a scenario in which
two competitors DO coexist, Gause’s law prompts us to examine
the situation more closely in order to determine the reasons for this
coexistence.

1
Technically, we require that two species share the same ecological niche, meaning they interact identically

with the same other species, require the same nutrients, live in the same habitats, . . . i.e, are largely identical in
their core survival requirements
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,! In a basic model for competition between two species, we assume
that each species grows according to the Logistic ODE if the other
species is not present. So if U

i

(t) is the population of species i
(i = 1, 2) at time t, then with intrinsic growth rates r

i

and carrying
capacities K

i

(i = 1, 2), the equations so far are:

dU1

dt
= r1U1

✓
1� U1

K1

◆
and

dU2

dt
= r2U2

✓
1� U2

K2

◆
.

,! However, when the two species are present and competing for
resources etc., the presence of each species will have a negative
impact on the growth rate of the other. If we think of the term

�U
i

K
i

in each equation as the limiting e↵ect on growth caused by

competition within species i , then a sensible first assumption is that
the e↵ect of competition between the two species follows the same
pattern.
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,! Thus we add a term �↵U2

K1
to the second term in the product in

the first equation, and similarly ��U1

K2
in the second equation. The

new equations are

1
= 1 1

✓
1 � 1 + ↵ 2

1

◆
2
= 2 2

✓
1 � 2 + � 1

2

◆
.

I ↵ and � can be thought of as (dimensionless - do a dimensional
analysis to see this) coe�cients which measure the relative
competitiveness of the two species. For example, if the species are
competing for a specific kind of food and each individual from
species 1 eats four times as much of that food as each individual of
species 2, then ↵ = 4 and � = 1

4
. In general, for two species in

the same ecological niche, ↵� = 1.

I We will nondimensionalise these equations to simplify them and
reduce the number of parameters from 6 before doing any further
analysis.
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Nondimensionalisation of the Competition Equations

,! EXAMPLE 3 Nondimensionalise the equations
dU1
dt

= r1U1

⇣
1� U1+↵U2

K1

⌘
and dU2

dt

= r2U2

⇣
1� U2+�U1

K2

⌘
.

I ANSWER

Using the five step procedure outlined earlier:
1. We will non-dimensionalise U1 to get u, U2 to get v , and t to get ⌧ .
2. Let 1( ) = 1 , 2( ) = 2 , and = 3⌧ , where a1, a2, and a3

are the three undetermined coe�cients to be found.

3.
dU1

dt

=
dU1

du

✓
du

d⌧

d⌧

dt

◆
=

✓
a1

a3

◆
du

d⌧
= r1a1u

✓
1�

a1u + ↵a2v

K1

◆
)

⌧
= 1 3

✓
1 � 1 + ↵ 2

1

◆
.

Similarly,
dU2

dt

=
dU2

dv

✓
dv

d⌧

d⌧

dt

◆
=

✓
a2

a3

◆
dv

d⌧
= r2a2v

✓
1�

a2v + �a1u

K2

◆
)

⌧
= 2 3

✓
1 � 2 + � 1

2

◆
.
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REMINDER:
du

d⌧
= r1a3u

✓
1 �

a1u + ↵a2v

K1

◆
and

dv

d⌧
= r2a3v

✓
1 �

a2v + �a1u

K2

◆

4. Focussing on simplifying the first equation, one possibility is to let

a3 =
1

r1
() ⌧ = r1t) then to get

a1
K1

= 1, let a1 = K1 () u =
U1

K1
). The

equations then become

du

d⌧
= u

✓
1� u � ↵a2

K1
v

◆
,
dv

d⌧
=

r2
r1
v

✓
1� a2v

K2
� �K1

K2
u

◆

from which it is clear to see that a good choice for a2 is

a2 = K2 () v =
U2

K2
); so the equations become

du

d⌧
= u

✓
1� u � ↵K2

K1
v

◆
,

dv

d⌧
=

r2
r1
v

✓
1� v � �K1

K2
u

◆

5. The ratios seen in the above equations suggest the definition of

variables

=
↵ 2

1

, =
� 1

2

, =
2

1

.
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REMINDER:
du

d⌧
= u

✓
1 � u �

↵K2

K1
v

◆
,

dv

d⌧
=

r2

r1
v

✓
1 � v �

�K1

K2
u

◆
, with

u =
U1

K1
, v =

U2

K2
, ⌧ =

t

r1
then we define a =

↵K2

K1
, b =

�K1

K2
, c =

r2

r1

5. (continued) Thus the final form of the dimensionless competition
equations is

⌧
= (1 � � ) ,

⌧
= (1 � � ) .

,! So the dimensionless equation only has THREE parameters, a, b,
and c as compared to the original equations which had SIX. Each
dimensionless population is given as a proportion of the carrying
capacity for that species (in the absence of the other species).
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REMINDER:
du

d⌧
= u (1 � u � av) ,

dv

d⌧
= cv (1 � v � bu)

,! The steady states can be easily shown to be

(0, 0), (0, 1), (1, 0),

✓
1 �
1 �

,
1 �
1 �

◆
.

 So all steady states except the last one reflect Gause’s law (of
competitive exclusion) in which one of the species dies out. Only
the last steady state is one in which there is coexistence of the two
species.

,! The Jacobian matrix is

( , ) =

✓
1 � 2 � �

� � 2 �

◆

I So (0, 0) =

✓
1 0
0

◆
and therefore the eigenvalues are 1 and

, both > 0,

meaning that the origin is an unstable node.
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REMINDER:
du

d⌧
= u (1 � u � av) ,

dv

d⌧
= cv (1 � v � bu), steady states

(0, 0), (0, 1), (1, 0), and

✓
1 � a

1 � ab

,
1 � b

1 � ab

◆
with J(u, v) =

✓
1 � 2u � av �ua

�bcv c � 2cv � bcu

◆

I J(0, 1) =

✓
1� a 0
�bc �c

◆
so the eigenvalues are 1� a and �c .

So if 1� a < 0 ) a > 1 both eigenvalues are negative and (0, 1) is
an asymptotically stable node; meanwhile if a < 1 one eigenvalue is
positive and the other is negative

meaning that (0, 1) is an unstable
saddle point.

I J(1, 0) =

✓
�1 �a
0 c(1� b)

◆
so the eigenvalues are �1 and

c(1� b). So if 1� b < 0 ) b > 1 both eigenvalues are negative
and (1, 0) is an asymptotically stable node; meanwhile if b < 1 one
eigenvalue is positive and the other is negative

meaning that (1, 0)
is an unstable saddle point.
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REMINDER:
du

d⌧
= u (1 � u � av) ,

dv

d⌧
= cv (1 � v � bu), steady states

(0, 0), (0, 1), (1, 0), and

✓
1 � a

1 � ab

,
1 � b

1 � ab

◆
with J(u, v) =

✓
1 � 2u � av �ua

�bcv c � 2cv � bcu

◆

I J
⇣

1�a

1�ab

, 1�b

1�ab

⌘
is a quite complicated expression so we will not

examine it in this general context.

I Instead, we note from what we have already seen that the values

a = 1 and b = 1 appear to be critical threshold values, so we will

look at four cases when considering the behaviour of solutions:
1. a > 1, b < 1
2. a < 1, b > 1
3. a < 1, b < 1

4. a > 1, b > 1.

I We will look at a representative sample of phase plane plots,
solution versus time plots, and direction fields for all four cases.
(NOTE the solution versus time plots will be for dimensionless
time, but I will still label the horizontal axis t instead of ⌧).
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I Note that the steady state associated with coexistence,✓
1� a

1� ab
,
1� b

1� ab

◆
, exists in the first quadrant (hence is biologically

realistic) only in CASES 3 (a < 1, b < 1) and 4 (a > 1, b > 1).

I In the following plots, the following data was used:

In all four cases, c =
r2
r1

= 1, the initial data was u = 0.7, v = 0.9.

I CASE 1 a = 1.2, b = 0.8

I CASE 2 a = 0.8, b = 1.3

I CASE 3 a = 0.7, b = 0.8

I CASE 4 a = 1.2, b = 1.1

I In CASES 3 and 4, the steady state

✓
1� a

1� ab
,
1� b

1� ab

◆
is indicated

by a large black dot.

I The du/dt and dv/dt nullclines are also plotted, and we can see
that the four cases correspond to di↵erent relative configurations of
the nullclines in the biologically realistic first quadrant.
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,! Here are observations on stability based on the graphs and
confirming the classification we did earlier for steady states:

1. a > 1, b < 1 Here, the second species always wins, thus steady

state (0, 1) is asymptotically stable and all other steady states are
unstable.

2. a < 1, b > 1 Here, the first species always wins, thus steady state

(1, 0) is asymptotically stable and all other steady states are
unstable.

3. a < 1, b < 1 Here, the two species coexist in the asymptotically

stable steady state
⇣

1�a

1�ab

, 1�b

1�ab

⌘
and all other steady states are

unstable.

However for competitive species occupying the same ecological
niche, ab = ↵� must = 1, so a and b cannot both be less than 1.
Hence this scenario is not possible.
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4. a > 1, b > 1 Here, either species can win depending on
the initial conditions. Notably, the coexistence steady
state

�
1�a

1�ab

, 1�b

1�ab

�
is unstable in this case.

,! So we have shown that in all cases, this model has a
steady state in which one species wins and the other
loses. Thus this model has been shown to exhibit Gause’s
law (of competitive exclusion).
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End of Section
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