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kinetics or communication within the nervous system, etc.

As for single ODEs, we will use three approaches to studying
systems of ODEs:

> Analytical (finding exact solutions).
> Numerical (approximating solutions to initial value problems).

> Geometrical (determining solution trends without solving the equations).

We will then turn our focus to deriving models which involve
systems of ODEs and will use some combination of the three
approaches/tools above to look at solutions to such systems.

| want you to acquire a good understanding of the three approaches
but also don't focus exclusively on them; learn to regard them as
tools to help you with exploring solutions to the systems of ODEs

which arise in your models.
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< The analytical approach - in which you learn to solve linear,
constant coefficient systems of ODEs using techniques and
concepts from linear algebra (notably eigenvalues and eigenvectors)
- will be useful also for the insight it gives to the later geometrical
approach. The truth is, however, with many of the models we study
it will be very difficult or impossible to find exact solutions.

< For specific models, with initial conditions, often the numerical
approach will be invaluable.
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Introduction

Advice On Navigating This Massive (almost 150 pages) Lecture

< Anyone planning on doing postgraduate studies, particularly in
any field related to Applied Mathematics, should try to become
familiar with all of this material, including the supplementary
reading. Having a good understanding of ODEs and the related
theory is important for many areas of application, for understanding
some aspects of PDEs, as well as in the study of other areas of
Mathematics such as Dynamical Systems, Differential Geometry,
and Lie Groups.
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Finding Eigenvalues and Eigenvectors Using Matlab
CASE 1: Solving « n With n different eigenvalues
Anx n with complex eigenvalues
« n With repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

Analytical Solutions to Systems of First Order ODEs

» Much of what we will do next will be similar to what one
does to solve linear, constant coefficient ODEs: - for
example, the linear second order constant coefficient ODE

d2x dx
(especially the simple case when Q(t) =0 - A
HOMOGENEOUS ODE).
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Analytical Solutions to Systems of First Order ODEs

» Much of what we will do next will be similar to what one
does to solve linear, constant coefficient ODEs: - for
example, the linear second order constant coefficient ODE

d2x dx
(especially the simple case when Q(t) =0 - A
HOMOGENEOUS ODE).

» We will also be using many of the ideas from the
Supplementary Lecture on Eigenvalues/Eigenvectors.
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Finding Eigenvalues and Eigenvectors Using Matlab
CASE 1: Solving Ap x n with n different eigenvalues
with complex eigenvalues

Analytical Solutions to Systems of First Order ODEs

2% n With repeated eigenvalues

Definitions and Conventions

DEFINITIONS |: A general system of n first order linear differential
equations is one which can be written in the form

xq(t) = pu(t)x(t) + pra(t)x(t) + ... + pra(t)xa(t) + &1(2)
x(t) = pa(t)xa(t) + pa(t)x(t) + ... + pan(t)xn(t) + 2(t)
x3(t) = pm(t)x1(t) + pn2(t)x2(t) + ... + pan(t)xn(t) + gn(t)
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2% n With repeated eigenvalues

Definitions and Conventions

DEFINITIONS |: A general system of n first order linear differential
equations is one which can be written in the form

x((t) = pu(t)x(t) + pr2(t)x2(t) + ... + pra(t)xn(t) + g1(t)
x3(t) = paa(t)xa(t) + pa2(t)x2(t) + ... + p2n(t)xn(t) + g2(t)
xp(t) = pm(t)xa(t) + pra(t)x2(t) + ... + pan(t)xn(t) + gn(t)
Xl(t)
Xz(t)
or, in matrix form, X /(t) = P(t)%(t) + g(t), where %(t) = E
x,,(tj
pir p12 ... Pin ai(t)
P21 P2 ... Po2n &(t)
P(t) = : : : : . and g(t) = .
p;ﬂ p;12 P;m gn(fj
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Finding Eigenvalues and Eigenvectors Using Matlab

CASE 1: Solving X’ n with n different eigenvalues
CASE 2: Solving / « n With complex eigenvalues
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Analytical Solutions to Systems of First Order ODEs

<« | EXAMPLE 1 | For example,
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<« | EXAMPLE 1 | For example,

e X (t) + sin?(t)x(t) +3y(t) = 10cost
y'(t) +x(t) = In(t? + Dy(t) 3 — 4t?

is a linear ODE system of equations since it can be rewritten as

sin? t 3 10cost
X(t) = - 2t x(t) — g}’(t)+ 2t
y'(t) = —x(t)+In(t2+ 1)y(t) + 3 — 4t?

or, in matrix form,

S8 7% weid | D8]+ o450 ]

Tx7(¢) T P(t) T x(t) 1 &(1)
< If g(t) = 0in X '(t) = P(t)%(t) 4+ &(t) then the linear system is said to be
HOMOGENEOUS.

So the linear system in EXAMPLE 1 above is NOT homogeneous, but

% [ ;Eg } = [ _%; in(e? % [ ;Eg } IS HOMOGENEOUS.
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with complex eigenvalues
« n With repeated eigenvalues

< Similar to the case with n'" order linear ODEs in the Calculus
course in year 1, we will mostly restrict ourselves to the simpler case
in which the COEFFICIENT MATRIX, P(t), in the homogeneous
system X '(t) = P(t)X(t), is a CONSTANT matrix. So we focus on
solving

X '(t) = AX(t), where A,x, is a constant matrix.

— EXAMPLE 1 does not have a constant coefficient matrix, but the
following does:

d x(t) -3 0 17 x(t)
v )= =1 2w
z(t) 2 2 =25 z(t)

(as does the “simplified” form of the system in EXAMPLE 2, even
though it is not homogeneous).
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yi = »»
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CASE 2: Solving / A with complex eigenvalues
CASE 3: Solving X AX, / with repeated eigenvalues

Converting nt" order Linear ODEs to Linear Systems of First Order ODEs

> We focus on first order systems of ODEs because, essentially, all other (systems
of) ODEs can be converted to a first order system of ODEs.

< There is a simple way of transforming an n" order single ODE into a system of
n first order ODEs. This is probably best demonstrated by an example:

— | EXAMPLE 3 | Transform u" — 17u"" + tu" + (cos t)u’ — 23u = 0 into a

system of four first order ODEs.
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Analytical Solutions to Systems of First Order ODEs CASE 1: Solving %/ y it i T S

CASE 2: Solving / A with complex eigenvalues
CASE 3: Solving X AX, / with repeated eigenvalues

Converting nt" order Linear ODEs to Linear Systems of First Order ODEs

> We focus on first order systems of ODEs because, essentially, all other (systems
of) ODEs can be converted to a first order system of ODEs.

< There is a simple way of transforming an n" order single ODE into a system of
n first order ODEs. This is probably best demonstrated by an example:

— | EXAMPLE 3 | Transform u" — 17u"" + tu" + (cos t)u’ — 23u = 0 into a

system of four first order ODEs.

- [AnSWER  Le

yi(t) = u(t); ya(t) = ' (2); ya(t) = v (t); ya(t) = u”(¢) (1)

We then automatically have that

i =
Y5 = 3
i = %
Vi =
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Analytical Solutions to Systems of First Order ODEs CASE 1: Solving %/ y it i T S

CASE 2: Solving / A with complex eigenvalues
CASE 3: Solving X AX, / with repeated eigenvalues

Converting nt" order Linear ODEs to Linear Systems of First Order ODEs

> We focus on first order systems of ODEs because, essentially, all other (systems
of) ODEs can be converted to a first order system of ODEs.

< There is a simple way of transforming an n" order single ODE into a system of
n first order ODEs. This is probably best demonstrated by an example:

— | EXAMPLE 3 | Transform u" — 17u"" + tu" + (cos t)u’ — 23u = 0 into a

system of four first order ODEs.

. Dot e
yi(t) = u(t); ya(t) = ' (2); ya(t) = v (t); ya(t) = u”(¢) (1)

We then automatically have that

i =
Yy = y3
i = va
Y i — u iv —
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Finding Elgenvalues and Eigenvectors Using Matlab
CASE 1: Solving X’ / , with n different eigenvalues

CASE 2: Solving / A with complex eigenvalues
CASE 3: Solving X AX, / with repeated eigenvalues

—

—

Converting nt" order Linear ODEs to Linear Systems of First Order ODEs

We focus on first order systems of ODEs because, essentially, all other (systems
of) ODEs can be converted to a first order system of ODEs.

There is a simple way of transforming an nt" order single ODE into a system of
n first order ODEs. This is probably best demonstrated by an example:

EXAMPLE 3 | Transform u" — 17u’’ + tu" + (cost)u’ — 23u =0 into a

system of four first order ODEs.

yi(t) = u(t); ya(t) = ' (2); ya(t) = v (t); ya(t) = u”(¢) (1)

We then automatically have that

no=»
B = ¥
i = wn
ys = u"¥ =23u— (cost)u — tu” + 170"
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CASE 1: Solving ¢ » with n different eigenvalues
ith complex eigenvalues
with repeated eigenvalues

—

—

Converting nt" order Linear ODEs to Linear Systems of First Order ODEs

We focus on first order systems of ODEs because, essentially, all other (systems
of) ODEs can be converted to a first order system of ODEs.

There is a simple way of transforming an nt" order single ODE into a system of
n first order ODEs. This is probably best demonstrated by an example:

EXAMPLE 3 | Transform u" — 17u’’ + tu" + (cost)u’ — 23u =0 into a

system of four first order ODEs.
ANSWER | Let
yi(t) = u(t); ya(t) = ' (t); ya(t) = u"(t); ya(t) = u”"(2) (1)
We then automatically have that

/

yn = »
B = ¥
i = wn
ys = u"¥ =23u— (cost)u — tu” + 170"

= Vs 23y; — (cost)ys — tys + 17y
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CASE 1: Solving = AX, »\,, « n With n different eigenvalues
ith complex eigenvalues
with repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

Converting nt" order Linear ODEs to Linear Systems of First Order ODEs

> We focus on first order systems of ODEs because, essentially, all other (systems
of) ODEs can be converted to a first order system of ODEs.

< There is a simple way of transforming an n" order single ODE into a system of
n first order ODEs. This is probably best demonstrated by an example:

— | EXAMPLE 3 | Transform u" — 17u"" + tu" + (cos t)u’ — 23u = 0 into a

system of four first order ODEs.

. Dot e
yi(t) = u(t); ya(t) = ' (2); ya(t) = v (t); ya(t) = u”(¢) (1)

We then automatically have that

i = »
s = v
!
Y3 = ya
ys = u"¥ =23u— (cost)u — tu” + 170"
=y, = 23y;1—(cost)y, —tys+ 17ys

~+ We can now solve for y1, y2, ¥3, and y4 and use Equations (1) to convert back
to a solution in terms of u(t).
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Analytical Solutions to Systems of First Order ODEs CASE 1: Solving , i 1 R et G s

CASE 2: Solving Anx n with complex eigenvalues
CASE 3: Solving X X, Apx n wWith repeated eigenvalues

REMINDER : y] = vy = v

vy o= Ya 23y; — (cost)yr — tys + 17y4

< And the matrix form of this system is y /(t) = P(t)y, or equivalently

4
dt y3
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CASE 2: Solving / « n With complex eigenvalues
CASE 3: Solving X AX, / , with repeated eigenvalues

REMINDER : y] = vy = v

23y; — (cost)yr — tyz + 17ys

’ ’
Y3 = ya, Y4

< And the matrix form of this system is y /(t) = P(t)y, or equivalently

1 0 1 0 0 Y1
diwn|_| o 0o 1 0 ||y
de | ys | 0 0 0 1 y3

Va4 23 —cost —t 17 Va
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CASE 1: Solving X’ Ap x n with n different eigenvalues
CASE 2: Solving / « n With complex eigenvalues
CASE 3: Solving X AX, / , with repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

REMINDER : y] = vy = v

23y; — (cost)yr — tyz + 17ys

’ ’
Y3 = ya, Y4

< And the matrix form of this system is y /(t) = P(t)y, or equivalently

1 0 1 0 0 Y1
diwn|_| o 0o 1 0 ||y
de | ys | 0 0 0 1 y3

Va4 23 —cost —t 17 Va

In general, to convert the n'" order ODE y(") = F(t,y,y’,...,y(" D) into a system
of n first order ODEs
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CASE 1: Solving > Ap x n with n different eigenvalues
CASE 2: Solving / « n With complex eigenvalues
CASE 3: Solving X AX, / , with repeated eigenvalues

REMINDER : y] = vy = v

vy o= Ya 23y; — (cost)yr — tys + 17y4

< And the matrix form of this system is y /(t) = P(t)y, or equivalently

1 0 1 0 0 Y1
diwn|_| o 0o 1 0 ||y
de | ys | 0 0 0 1 y3

Va4 23 —cost —t 17 Va

In general, to convert the n'" order ODE y(") = F(t,y,y’,...,y(" D) into a system
of n first order ODEs

Let x1 =y, x2x=y, ..., xo=y" 1. THEN
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Analytical Solutions to Systems of First Order ODEs CASE 1: Solving %/ y it i T S

CASE 2: Solving / A with complex eigenvalues
CASE 3: Solving X AX, / with repeated eigenvalues

REMINDER : y] = vy = v

23y; — (cost)yr — tyz + 17ys

’ ’
Y3 = ya, Y4

< And the matrix form of this system is y /(t) = P(t)y, or equivalently

1 0 1 0 0 Y1
diwn|_| o 0o 1 0 ||y
de | ys | 0 0 0 1 y3

Va4 23 —cost —t 17 Va

In general, to convert the n'" order ODE y(") = F(t,y,y’,...,y(" D) into a system

of n first order ODEs
Let i =y, xx=y, ., xp=y"Y. THEN

vy = F(t,y,y’,...,y"" D) is equivalent to y(M = F(t,x1,x0,...,xn), and
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Analytical Solutions to Systems of First CASE 1: Solving / / , with n different eigenvalues

CASE 2: Solving / Anxn h complex eigenvalues
CASE 3: Solving X AX, / with repeated eigenvalues

REMINDER : y] = vy = v

vy o= Ya 23y; — (cost)yr — tys + 17y4

< And the matrix form of this system is y /(t) = P(t)y, or equivalently

1 0 1 0 0 Y1
diwn|_| o 0o 1 0 ||y
de | ys | 0 0 0 1 y3

Va4 23 —cost —t 17 Va

In general, to convert the n'" order ODE y(") = F(t,y,y’,...,y(" D) into a system
of n first order ODEs

Let x1 =y, x2x=y, ..., xo=y" 1. THEN

vy = F(t,y,y’,...,y"" D) is equivalent to y(M = F(t,x1,x0,...,xn), and

’

X3 = x
!
Xp_1 Xn
’
Xn = F(t7X17X27"'7Xn)‘
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CASE 1: Solving / n with n different eigenvalues
CASE 2: Solving Anx n with complex eigenvalues
CASE 3: Solving X X, Apx n wWith repeated eigenvalues

s | EXAMPLE 4 | Transform y"” 4+ 0.5y’ +2y = 3cost and

w'” — 3w = 0 into systems of first order equations.

Analytical Solutions to Systems of First Order ODEs
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CASE 1: Solving X’ n with n different eigenvalues
CASE 2: Solving / « n With complex eigenvalues
CASE 3: Solving X AX, / , with repeated eigenvalues

s | EXAMPLE 4 | Transform y"” 4+ 0.5y’ +2y = 3cost and

w'” — 3w = 0 into systems of first order equations.

Analytical Solutions to Systems of First Order ODEs

Let xa =y, xo =y
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» with n different eigenvalues
CASE 2: Solving / « n With complex eigenvalues
CASE 3: Solving X AX, / , with repeated eigenvalues

s | EXAMPLE 4 | Transform y"” 4+ 0.5y’ +2y = 3cost and

w'” — 3w = 0 into systems of first order equations.

— Let xi =y, x =y =
X = x
x5 =
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Analytical Solutions to Systems of First Order ODEs CASE 1:/Solving X/

» with n different eigenvalues
CASE 2: Solving / « n With complex eigenvalues
CASE 3: Solving X AX, / , with repeated eigenvalues

s | EXAMPLE 4 | Transform y"” 4+ 0.5y’ +2y = 3cost and

w'” — 3w = 0 into systems of first order equations.

— Let xi =y, x =y =
X = x
x5 = —2x3 —0.5x2+ 3cost.
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Analytical Solutions to Systems of First Order ODEs CASE 1:/Solving X/

» with n different eigenvalues
CASE 2: Solving / « n With complex eigenvalues
CASE 3: Solving X AX, / , with repeated eigenvalues

s | EXAMPLE 4 | Transform y"” 4+ 0.5y’ +2y = 3cost and

w'” — 3w = 0 into systems of first order equations.

— Let xi =y, x =y =
X = x
x5 = —2x3 —0.5x2+ 3cost.

In matrix form, this is
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Analytical Solutions to Systems of First Order ODEs CASE 1:/Solving X/ B hidiTerenteizenvalues

CASE 2: Solving / « n With complex eigenvalues

CASE 3: Solving X AX, / , with repeated eigenvalues

s | EXAMPLE 4 | Transform y"” 4+ 0.5y’ +2y = 3cost and

w'” — 3w = 0 into systems of first order equations.

— Let xi =y, x =y =
X = x
x5 = —2x3 —0.5x2+ 3cost.

. .. X:
In matrix form, this is % [ L ] =
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Analytical Solutions to Systems of First Order ODEs CASE 1:/Solving X/ B hidiTerenteizenvalues

CASE 2: Solving / « n With complex eigenvalues
CASE 3: Solving X AX, / , with repeated eigenvalues

s | EXAMPLE 4 | Transform y"” 4+ 0.5y’ +2y = 3cost and

w'” — 3w = 0 into systems of first order equations.

— Let xi =y, x =y =
X = x
x5 = —2x3 —0.5x2+ 3cost.

. . od | x| 0 1 X1 0
In matrix form, this is s [ X2 ] = [ 2 _0s5 } |: Xz ] + [ 3cost }
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Analytical Solutions to Systems of First Order ODEs CASE 1:/Solving X/ B hidiTerenteizenvalues

CASE 2: Solving / « n With complex eigenvalues
CASE 3: Solving X AX, / , with repeated eigenvalues

s | EXAMPLE 4 | Transform y"” 4+ 0.5y’ +2y = 3cost and

w'” — 3w = 0 into systems of first order equations.

— Let xi =y, x =y =
X = x
x5 = —2x3 —0.5x2+ 3cost.

. . od | x| 0 1 X1 0
In matrix form, this is s [ X2 ] = [ 2 _0s5 } |: Xz ] + [ 3cost }

Llet x; =w, xo=w/, x3=w" =
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CASE 2: Solving / « n With complex eigenvalues
CASE 3: Solving X AX, / , with repeated eigenvalues

s | EXAMPLE 4 | Transform y"” 4+ 0.5y’ +2y = 3cost and

w'” — 3w = 0 into systems of first order equations.

— Let xi =y, x =y =
X = x
x5 = —2x3 —0.5x2+ 3cost.

. . od | x| 0 1 X1 0
In matrix form, this is s [ X2 ] = [ 2 _0s5 } |: Xz ] + [ 3cost }

Llet x; =w, xo=w/, x3=w" =

X; = X2
’

X, = X3
/ —

x3 =
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Analytical Solutions to Systems of First Order ODEs EAGIE T3 Shibii - i 1 R et G s

CASE 2: Solving / « n With complex eigenvalues
CASE 3: Solving X AX, / , with repeated eigenvalues

s | EXAMPLE 4 | Transform y"” 4+ 0.5y’ +2y = 3cost and

w'” — 3w = 0 into systems of first order equations.

— Let xi =y, x =y =
X = x
x5 = —2x3 —0.5x2+ 3cost.

. . od | x| 0 1 X1 0
In matrix form, this is s [ X2 ] = [ 2 _0s5 } |: Xz ] + [ 3cost }

Llet x; =w, xo=w/, x3=w" =

X = X
!

X, = X3
/

x3 = 3x1.
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Analytical Solutions to Systems of First Order ODEs CASE 1:/Solving X/ B hidiTerenteizenvalues

CASE 2: Solving / « n With complex eigenvalues
CASE 3: Solving X AX, / , with repeated eigenvalues

s | EXAMPLE 4 | Transform y"” 4+ 0.5y’ +2y = 3cost and

w'” — 3w = 0 into systems of first order equations.

— Let xi =y, x =y =
X = x
x5 = —2x3 —0.5x2+ 3cost.

. . od | x| 0 1 X1 0
In matrix form, this is s [ X2 ] = [ 2 _0s5 } |: Xz ] + [ 3cost }

Llet x; =w, xo=w/, x3=w" =

X = X
!

X, = X3
/

x3 = 3x1.

In matrix form, this is
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Analytical Solutions to Systems of First Order ODEs CASE 1:/Solving X/ B hidiTerenteizenvalues

CASE 2: Solving / « n With complex eigenvalues
CASE 3: Solving X AX, / , with repeated eigenvalues

s | EXAMPLE 4 | Transform y"” 4+ 0.5y’ +2y = 3cost and

w'” — 3w = 0 into systems of first order equations.

— Let xi =y, x =y =
X = x
x5 = —2x3 —0.5x2+ 3cost.

. . od | x| 0 1 X1 0
In matrix form, this is s [ X2 ] = [ 2 _0s5 } |: Xz ] + [ 3cost }

Llet x; =w, xo=w/, x3=w" =

X = x
/
X3 = X3
!
x3 = 3x1.
’
X1
In matrix form, thisis | x | (t) =
X3
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Finding Eigenvalues and Eigenvectors Using Matlab
CASE 1: Solving
CASE 2: Solving / Anxn h complex eigenvalues

Analytical Solutions to Systems of First Order ODEs

CASE 3: Solving X AX, / with repeated eigenvalues

- 3w = 0 into systems of first order equations.
N ANSWER - Letxi=y, o=y =

X = X

x5 = —2x3 —0.5x2+ 3cost.

. . od | x| 0 1 X1 0
In matrix form, this is s [ X2 ] = [ 2 _0s5 } |: Xz ] + [ 3cost }

Letx1:W, xx=w, x3=w'" =

X = x
x5 = x3
xé = 3x1
x 1 01 0 x1
In matrix form, thisis | xo (t) = 0 0 1 X2
X3 0 0 X3

14 /131



Finding E|genvalues and Eigenvectors Using Matlab

Analytical Solutions to Systems of First Order ODEs CASE 1: Solving %/ A b i e G ElEs

CASE 2: Solving / / , with complex eigenvalues
CASE 3: Solving X A » with repeated eigenvalues

< [EXAMPLE 4| Transform v + 0.5y’ + 2y = 3cos t and

w'” — 3w = 0 into systems of first order equations.
< [ANSWER Letxi =y, o=y =

x = x

x5 = —2x3 —0.5x2+ 3cost.

. . od | x| 0 1 X1 0
In matrix form, this is s [ X2 ] = [ 2 _0s5 } |: X2 ] + [ 3cost }

Letx1:W, xx=w, x3=w'" =

X1 = x
x5 = x3
xé = 3x1.
x ]’ 0 1 0 x1
In matrix form, thisis | xo (t) = 0 0 1 X2
X3 3 0 0 X3
» ASIDE - if that last problem had initial conditions, e.g., w(tp) = a, w/(ty) = b,
X1(t0) a
and w’/(tg) = ¢, they would become x2(tg) = b
X3(t0) c
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CASE 1: Solving « n with n different eigenvalues
CASE 2: Solving / « n With complex eigenvalues
CASE 3: Solving X Apx n with repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

Some General Theory of Linear Systems of First Order ODEs‘

R(t) = P(t)R(t) + &(t)

< As with n®" order linear single ODEs, we can find a general solution to the

inhomogeneous system of n first order linear ODEs X(t) = P(t)X(t) + &(t) by
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CASE 1: Solving / / , with n different eigenvalues
CASE 2: Solving / Anxn h complex eigenvalues
CASE 3: Solving X AX, / with repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

Some General Theory of Linear Systems of First Order ODEs‘
X(t) = P(£)%(t) + &(t)

< As with n®" order linear single ODEs, we can find a general solution to the

inhomogeneous system of n first order linear ODEs X(t) = P(t)X(t) + &(t) by

1. finding a general solution to the homogeneous system X(t) = P(t)X(t),
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Analytical Solutions to Systems of First Order ODEs CASE 1: Solving 5 it T GeElnes

ith complex eigenvalues
with repeated eigenvalues

Some General Theory of Linear Systems of First Order ODEs‘

| (1) = P(OR(1) + £(1)

< As with n®" order linear single ODEs, we can find a general solution to the

inhomogeneous system of n first order linear ODEs X(t) = P(t)X(t) + &(t) by

1. finding a general solution to the homogeneous system X(t) = P(t)X(t),
2. then finding ANY particular solution to the full system

X(t) = P(t)X(t) + g(t) (using a systems version of the Method of
Undetermined Coefficients or other techniques to be discussed later), and
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Finding Eloenvalues and E|0envect0|5 Using Matlab
CASE 1: Solving ¢ » with n different eigenvalues
ith complex eigenvalues
with repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

Some General Theory of Linear Systems of First Order ODEs‘

| (1) = P(OR(1) + £(1)

< As with n®" order linear single ODEs, we can find a general solution to the

inhomogeneous system of n first order linear ODEs X(t) = P(t)X(t) + &(t) by

1. finding a general solution to the homogeneous system X(t) = P(t)X(t),
2. then finding ANY particular solution to the full system

X(t) = P(t)X(t) + g(t) (using a systems version of the Method of
Undetermined Coefficients or other techniques to be discussed later), and

3. adding the two solutions from steps (1) and (2).
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CASE 1: Solving / Ap x n with n different eigenvalues
CASE 2: Solving Anx n with complex eigenvalues
CASE 3: Solving X nx n With repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

Some General Theory of Linear Systems of First Order ODEs‘
| (1) = P(OR(1) + £(1)

< As with n®" order linear single ODEs, we can find a general solution to the

inhomogeneous system of n first order linear ODEs X(t) = P(t)X(t) + &(t) by

1. finding a general solution to the homogeneous system X(t) = P(t)X(t),
2. then finding ANY particular solution to the full system
X(t) = P(t)X(t) + g(t) (using a systems version of the Method of
Undetermined Coefficients or other techniques to be discussed later), and
3. adding the two solutions from steps (1) and (2).
> Partial Proof: I'll leave you to show that if xz(t) is a solution to
X(t) = P(t)X(t) and xp(t) is a solution to X(t) = P(t)X(t) + g(t), then
Xe(t) + Xp(t) is a solution to X(t) = P(t)X(t) + Z(t).
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Finding Eigenvalues and Eigenvectors Using Matlab

CASE 1: Solving / Ap x n with n different eigenvalues
CASE 2: Solving Anx n with complex eigenvalues
CASE 3: Solving X , Apx n with repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

Some General Theory of Linear Systems of First Order ODEs‘
| (1) = P(OR(1) + £(1)

< As with n®" order linear single ODEs, we can find a general solution to the

inhomogeneous system of n first order linear ODEs X(t) = P(t)X(t) + &(t) by
1. finding a general solution to the homogeneous system X(t) = P(t)X(t),
2. then finding ANY particular solution to the full system
X(t) = P(t)X(t) + g(t) (using a systems version of the Method of
Undetermined Coefficients or other techniques to be discussed later), and
3. adding the two solutions from steps (1) and (2).
> Partial Proof: I'll leave you to show that if xz(t) is a solution to
X(t) = P(t)X(t) and xp(t) is a solution to X(t) = P(t)X(t) + g(t), then
Xe(t) + Xp(t) is a solution to X(t) = P(t)X(t) + Z(t).
Therefore, as with n" order single equations, we will concentrate first on finding
general solutions to the homogeneous system, X(t) = P(t)X(t), then we will spend (a
little) time learning how to find particular solutions to the non-homogeneous system,
X(t) = P(t)X(t) + g(t) - at least, in the special case of a constant matrix P(t) = A.
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CASE 1: Solving / n with n different eigenvalues
CASE 2: Solving Anx n with complex eigenvalues
CASE 3: Solving X X, Apx n wWith repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

<~ NOTE as for homogeneous linear ODEs, the principle of superposition applies
to systems of first order linear ODEs:
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Analytical Solutions to Systems of First Order ODEs CASE 1: Solving , it T GeElnes

CASE 2: Solving Anx n with complex eigenvalues
CASE 3: Solving X X, Apx n wWith repeated eigenvalues

<~ NOTE as for homogeneous linear ODEs, the principle of superposition applies
to systems of first order linear ODEs: If the vector functions X1(t) and X(t) are
solutions to X / = P(t)X, then so is the linear combination c¢1xi + cxx3 for any

constants ¢; and ¢.
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Analytical Solutions to Systems of First Order ODEs CASE 1:/Solving X/

» with n different eigenvalues
CASE 2: Solving / « n With complex eigenvalues
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interval a < t < B.
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— Recall (see Supplementary Lecture on Eigenvalues/Eigenvectors) that we can
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Xa(t), ..., Xa(t) are linearly independent at t = to.

< Furthermore, in fact if tp is any point in the interval o < t < 8 on which X;(t),
R (t), ..., Xa(t) are solutions to X ' = P(t)X, then EITHER
WX, %,...,%](t) =0 Ya<t<p

OR
WRi,%,...,%](t) #0 Va<t<p.
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— Recall (see Supplementary Lecture on Eigenvalues/Eigenvectors) that we can
check if a set of n dimensional vectors is linearly independent by forming the
matrix A whose columns consist of those n vectors, then checking that
det(A) # 0.

< We can do something similar for vector functions X (t), X2(t), ..., Xa(t): Form
the matrix X(t) whose columns consist of the vector functions X (t), X%(t),
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WX, X, ..., Xa](to) and called the WRONSKIAN of the vector functions
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< Furthermore, in fact if tp is any point in the interval o < t < 8 on which X;(t),
R (t), ..., Xa(t) are solutions to X ' = P(t)X, then EITHER

WRL, %, .. %](1) =0 Ya<t<}p

OR
WRi,%,...,%](t) #0 Va<t<p.

— In other words, if we have n solutions to X / = P(t)X on the interval a < t < 3,
we need only evaluate the Wronskian of those n solution vector functions at
ONE point in the interval a < t < (3 to find out if they are linearly independent
or linearly dependent.
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» In the approach that we will use for solving the
homogeneous system X ' = AX (where A, is a
constant matrix), we will ensure that the n
solutions we obtain are linearly independent
from the outset - and hence that their linear
combination forms a general solution to the
system X ' = AX.
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, Apx n with repeated eigenvalues

» In the approach that we will use for solving the
homogeneous system X ' = AX (where A, is a
constant matrix), we will ensure that the n
solutions we obtain are linearly independent
from the outset - and hence that their linear
combination forms a general solution to the
system X ' = AX.

» So there will be no real need to check the linear
independence of our solution vector functions
using the Wronskian.
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< Recall more generally for ODEs such as ax” + bx’ + cx = 0 (and
higher order linear constant coefficient homogeneous ODEs), we
assumed solutions of the form x(t) = ce™ and used a method of
undetermined coefficients approach to determine what appropriate
values for r were (treating ¢ as an arbitrary constant which could
be different for different values of r).
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< Here we are assuming that A, is a constant matrix. Note that
when n =1 we have the simple first order system x’ = ax whose
solution is x(t) = ce®, where c is an arbitrary constant.

< Recall more generally for ODEs such as ax” + bx’ + cx = 0 (and
higher order linear constant coefficient homogeneous ODEs), we
assumed solutions of the form x(t) = ce™ and used a method of
undetermined coefficients approach to determine what appropriate
values for r were (treating ¢ as an arbitrary constant which could
be different for different values of r).

» Using a similar logic as in that 2" (or higher) order single
homogeneous linear ODE case, we assume solutions to X / = AX of
the form X(t) = Ce"™where the constant vector
¢ =c,c-.-,cs]T and the exponent r are to be determined.

> As always, we proceed by differentiating X(t) = ce™ and

substituting into the ODE system X ' = AX.
19/131



Finding Elgenvalues and Eigenvectors Using Matlab

CASE 1: Solving / n with n different eigenvalues
CASE 2: Solving Anx n with complex eigenvalues
CASE 3: Solving X X, Apx n wWith repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

REMINDER: Solving X ' = AX by assuming X(t) = ce"

20/131



Finding Elgenvalues and Eigenvectors Using Matlab

CASE 1: Solving / n with n different eigenvalues
CASE 2: Solving Anx n with complex eigenvalues
CASE 3: Solving X X, Apx n wWith repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

REMINDER: Solving X ' = AX by assuming X(t) = ce"

20/131



Finding Elgenvalues and Eigenvectors Using Matlab

CASE 1: Solving / n with n different eigenvalues
CASE 2: Solving Anx n with complex eigenvalues
CASE 3: Solving X X, Apx n wWith repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

REMINDER: Solving X ' = AX by assuming X(t) = ce"

, and substituting into the ODE system we get

20/131



Finding Elgenvalues and Eigenvectors Using Matlab

CASE 1: Solving / n with n different eigenvalues
CASE 2: Solving Anx n with complex eigenvalues
CASE 3: Solving X X, Apx n wWith repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

REMINDER: Solving X ' = AX by assuming X(t) = ce"

— So X' = rée™, and substituting into the ODE system we get

rée™ = Ace™ = r&= AC (since e >0V t, we can divide by it).

20/131



Finding Elgenvalues and Eigenvectors Using Matlab

CASE 1: Solving / n with n different eigenvalues
CASE 2: Solving Anx n with complex eigenvalues
CASE 3: Solving X X, Apx n wWith repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

REMINDER: Solving X ' = AX by assuming X(t) = ce"

— So X' = rée™, and substituting into the ODE system we get

rée™ = Ace™ = r&= AC (since e >0V t, we can divide by it).

Equivalently,

20/131



Finding Elgenvalues and Eigenvectors Using Matlab

CASE 1: Solving / n with n different eigenvalues
CASE 2: Solving Anx n with complex eigenvalues
CASE 3: Solving X X, Apx n wWith repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

REMINDER: Solving X ' = AX by assuming X(t) = ce"

— So X' = rée™, and substituting into the ODE system we get

rée™ = Ace™ = r&= AC (since e >0V t, we can divide by it).

Equivalently, (A — rI)@=0.

20/131



Finding Eigenvalues and Eigenvectors Using Matlab

CASE 1: Solving X’ Ap x n with n different eigenvalues
CASE 2: Solving / « n With complex eigenvalues
CASE 3: Solving X AX, / , with repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

REMINDER: Solving X ' = AX by assuming X(t) = ce"

— So X' = rée™, and substituting into the ODE system we get

rée™ = Ace™ = r&= AC (since e >0V t, we can divide by it).
Equivalently, (A — rI)@=0.

~» So the r values we seek are exactly the EIGENVALUES of A and the ¢ values
we seek are the corresponding EIGENVECTORS of A.
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— So X' = rée™, and substituting into the ODE system we get

rée™ = Ace™ = r&= AC (since e >0V t, we can divide by it).
Equivalently, (A — rI)@=0.

~» So the r values we seek are exactly the EIGENVALUES of A and the ¢ values
we seek are the corresponding EIGENVECTORS of A.

< To get a general solution of X/ = AX if Apxn, we will need n linearly

independent eigenvectors ¢, &, ..., ¢, along with their corresponding
eigenvalues ri, r, ..., rp. In that case, it's easy to show that the solution
vector functions ciet, Ge™t, ..., che™t must also be linearly independent.

And therefore a general solution to X / = AX would be
X(t) = Biéiet! + ByGe! + ... + Bpcre™t,

where Bj, Ba, ..., B, are arbitrary constants.
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REMINDER: Solving X ' = AX by assuming X(t) = ce"

— So X' = rée™, and substituting into the ODE system we get

rée™ = Ace™ = r&= AC (since e >0V t, we can divide by it).
Equivalently, (A — rI)@=0.

~» So the r values we seek are exactly the EIGENVALUES of A and the ¢ values
we seek are the corresponding EIGENVECTORS of A.

< To get a general solution of X/ = AX if Apxn, we will need n linearly

independent eigenvectors ¢, &, ..., ¢, along with their corresponding
eigenvalues ri, r, ..., rp. In that case, it's easy to show that the solution
vector functions ciet, Ge™t, ..., che™t must also be linearly independent.

And therefore a general solution to X / = AX would be
X(t) = Biéiet! + ByGe! + ... + Bpcre™t,

where Bj, Ba, ..., B, are arbitrary constants.
NOTE it does not matter if there are repeated eigenvalues, i.e. r; = r; for some
1 <i<j<n, PROVIDED there are n linearly independent eigenvectors (see also
EXAMPLES 4, 5, 6 and 10 of the Supplementary Lecture on
Eigenvalues/Eigenvectors).
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» So in summary, to find the general solution to X / = AX, we find the
eigenvalues and corresponding eigenvectors of A.
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» So in summary, to find the general solution to X / = AX, we find the
eigenvalues and corresponding eigenvectors of A.

> For each eigenvalue-eigenvector pair r;, & (so that AG = r;i&;), 1 < i < n, the
vector function B;Cjeit is a solution to X / = AX (where B; is an arbitrary
constant).
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> For each eigenvalue-eigenvector pair r;, & (so that AG = r;i&;), 1 < i < n, the
vector function B;Cjeit is a solution to X / = AX (where B; is an arbitrary

constant).
» If we find n linearly independent eigenvectors ¢, Gy, . . ., &, with corresponding
eigenvalues r1, ra, ..., rp, then a general solution to ¥ / = AX is
X(t) = Biciet + Bydret + ... + B,Ee™t, (2)
where By, Ba, ..., B, are arbitrary constants.
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» If we find n linearly independent eigenvectors ¢, Gy, . . ., &, with corresponding
eigenvalues r1, ra, ..., rp, then a general solution to ¥ / = AX is
X(t) = Biciet + Bydret + ... + B,Ee™t, (2)
where By, Ba, ..., B, are arbitrary constants.

» So, for example, if Apxn has n different eigenvalues, then we easily get a
general solution of the form of Equation (2).
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» So in summary, to find the general solution to X / = AX, we find the
eigenvalues and corresponding eigenvectors of A.

> For each eigenvalue-eigenvector pair r;, & (so that AG = r;i&;), 1 < i < n, the
vector function B;Cjeit is a solution to X / = AX (where B; is an arbitrary

constant).
» If we find n linearly independent eigenvectors ¢, Gy, . . ., &, with corresponding
eigenvalues r1, ra, ..., rp, then a general solution to ¥ / = AX is
X(t) = Biciet + Bydret + ... + B,Ee™t, (2)
where By, Ba, ..., B, are arbitrary constants.

» So, for example, if Apxn has n different eigenvalues, then we easily get a
general solution of the form of Equation (2).

> So our solution will depend on the eigenvalues (distinct, repeated, complex)
and most importantly on the number of linearly independent eigenvectors
(repeated eigenvalues case only) that we get.
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» So in summary, to find the general solution to X / = AX, we find the
eigenvalues and corresponding eigenvectors of A.

> For each eigenvalue-eigenvector pair r;, & (so that AG = r;i&;), 1 < i < n, the
vector function B;Cjeit is a solution to X / = AX (where B; is an arbitrary

constant).
» If we find n linearly independent eigenvectors ¢, Gy, . . ., &, with corresponding
eigenvalues r1, ra, ..., rp, then a general solution to ¥ / = AX is
X(t) = Biciet + Bydret + ... + B,Ee™t, (2)
where By, Ba, ..., B, are arbitrary constants.

» So, for example, if Apxn has n different eigenvalues, then we easily get a
general solution of the form of Equation (2).

> So our solution will depend on the eigenvalues (distinct, repeated, complex)
and most importantly on the number of linearly independent eigenvectors
(repeated eigenvalues case only) that we get. We will consider all of the
relevant scenarios in the following examples.
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CASE 1: Solving X’ A, « n with n different eigenvalues
CASE 2: Solving / Anxn h complex eigenvalues
CASE 3: Solving X A with repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

Finding Eigenvalues and Eigenvectors Using Matlab

» Although in the following examples | will show some of the details of how to
find the eigenvalues and eigenvectors, for practical purposes it will typically be
more convenient to calculate these using Matlab’s in-built eig() function.
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CASE 2: Solving / / , with complex eigenvalues
CASE 3: Solving X Apx n with repeated eigenvalues

Finding Eigenvalues and Eigenvectors Using Matlab

» Although in the following examples | will show some of the details of how to
find the eigenvalues and eigenvectors, for practical purposes it will typically be
more convenient to calculate these using Matlab’s in-built eig() function.

» Crucially, eig() will also give a complete diagonalisation of a diagonalisable
square matrix A ~- i.e., it will find an invertible matrix P such that
P~1AP = D, a diagonal matrix with the eigenvalues of A on the main diagonal.
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» Although in the following examples | will show some of the details of how to
find the eigenvalues and eigenvectors, for practical purposes it will typically be
more convenient to calculate these using Matlab’s in-built eig() function.

Crucially, eig() will also give a complete diagonalisation of a diagonalisable
square matrix A ~- i.e., it will find an invertible matrix P such that
P~1AP = D, a diagonal matrix with the eigenvalues of A on the main diagonal.

If Ais an n X n matrix, then

>> eig(A) returns a column vector with the eigenvalues of A.
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CASE 1: Solving X/ / A, % n with n different eigenvalues

CASE 2: Solving Anx n with complex eigenvalues
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>>
>>

Finding Eigenvalues and Eigenvectors Using Matlab

Although in the following examples | will show some of the details of how to
find the eigenvalues and eigenvectors, for practical purposes it will typically be
more convenient to calculate these using Matlab’s in-built eig() function.

Crucially, eig() will also give a complete diagonalisation of a diagonalisable
square matrix A ~- i.e., it will find an invertible matrix P such that
P~1AP = D, a diagonal matrix with the eigenvalues of A on the main diagonal.

If Ais an n X n matrix, then
eig(A) returns a column vector with the eigenvalues of A.

[P, D] = eig(A) returns a diagonal matrix D (or whatever else you
want to call it) with the eigenvalues of A on its main diagonal, and
an invertible matrix P (or whatever else you want to call it) whose
columns are normalised (scaled so that have length 1) eigenvectors

of A in the same order as the corresponding eigenvalues in D. Thus
P~1AP = D.
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CASE 1: Solving / , with n different eigenvalues
CASE 2: Solving / Anxn h complex eigenvalues
CASE 3: Solving X AX, / with repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

» For example (see also EXAMPLE 5 next), with

A 43 1

273 L then

>> eig(A) returns
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CASE 1: Solving A, % n with n different eigenvalues
CASE 2: Solving with complex eigenvalues
CASE 3: Solving X nx n With repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

» For example (see also EXAMPLE 5 next), with
_ | 43

A=1 o3 1

>> eig(A) returns Sgggg and

>> [P, D] = eig(A) returns

, then
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8 with n different eigenvalues

with complex eigenvalues
with repeated eigenvalues

» For example (see also EXAMPLE 5 next), with
[ 43 -1
A—[_2/3 1],then

2.0000

>> eig(A) returns 0.3333 and

>> [P, D] = eig(A) returns

p_ [ 08321 07071 4 p_|2000 o0
~ | —o05547 07071 | " - 0  0.3333
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th n different eigenvalues
ith complex eigenvalues
ith repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

» For example (see also EXAMPLE 5 next), with
4/3 -1
A= , then

—2/3 1
_ 2.0000
>> eig(A) returns 0.3333 and

>> [P, D] = eig(A) returns

P:[ 0.8321 0.7071

2.0000 0
—~0.5547 0.7071] and D‘[ ]

0 0.3333

» |'ll leave you to figure out how you could scale the
eigenvectors (columns of P) to have eigenvectors with
whole number entries.
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Finding Eigenvalues and Eigenvectors Using Matlab
th n different eigenvalues
ith complex eigenvalues
ith repeated eigenvalues

>>

>>

For example (see also EXAMPLE 5 next), with
4/3 -1
A= , then

—2/3 1
_ 2.0000
eig(A) returns [ 0.3333 ] and
[P, D] = eig(A) returns
0.8321 0.7071 2.0000 0
P= [ ~0.5547 0.7071 ] and D= [ 0  0.3333 1

I'll leave you to figure out how you could scale the
eigenvectors (columns of P) to have eigenvectors with
whole number entries.

Type help eig in the Matlab command window for more
information on eig().
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CASE 1: Solving X X, Anx n with n different eigenvalues

Analytical Solutions to Systems of First Order ODEs

CASE 2: Solving / A with complex eigenvalues
CASE 3: Solving X AX, / with repeated eigenvalues

’ CASE 1: Solving X ' = AX, A,xn, with n different eigenvalues‘

— Consider the (modified form of the) homogeneous
_ 4/3 -1 bs :
system from EXAMPLE 2, 4 2 [ Y ] = [ 23 1 ] [ Y } Find a
general solution.

24 /131



Finding Eigenvalues and Eigenvectors Using Matlab

CASE 1: Solving X nx n With n different eigenvalues
nx n With complex eigenvalues
2% n With repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

’ CASE 1: Solving X ' = AX, A,xn, with n different eigenvalues‘

— Consider the (modified form of the) homogeneous

system from EXAMPLE 2, < [ ; ] = [ _gﬁ 71 ] [ ; } Find a

general solution.

First we find the eigenvalues and corresponding eigenvectors of [ 7‘2‘;2 _1 } by
solving
0= 4/3 — A -1 |
- —2/3 1—-X |
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Analytical Solutions to Systems of First Order ODEs CASE 1: Solving X/ = Anx n with n different eigenvalues

: Solving = ; with complex eigenvalues
CASE 2: Solving A, th I g |

CASE 3: Solving X « n With repeated eigenvalues

’ CASE 1: Solving X ' = AX, A,xn, with n different eigenvalues‘

— Consider the (modified form of the) homogeneous

system from EXAMPLE 2, < [ ; ] = [ _gﬁ 71 ] [ ; } Find a

general solution.

First we find the eigenvalues and corresponding eigenvectors of [ 7‘2‘;2 _1 } by
solving
| 4/3=-x -1 (4 2
0= -2/3 17/\‘_(5_)‘)(1_))_5_
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Analytical Solutions to Systems of First Order ODEs CASE 1: Solving X/ = Anx n with n different eigenvalues

: Solving = ; with complex eigenvalues
CASE 2: Solving A, th I g |

CASE 3: Solving X « n With repeated eigenvalues

’ CASE 1: Solving X ' = AX, A,xn, with n different eigenvalues‘

— Consider the (modified form of the) homogeneous

system from EXAMPLE 2, < [ ; ] = [ _gﬁ 71 ] [ ; } Find a

general solution.

First we find the eigenvalues and corresponding eigenvectors of [ 7‘2‘;2 _1 } by
solving
4/3 — -1 4 ) 2 2 7 2
0= =(==2MNA-A)—==X—-=A4+=-=0
—-2/3 1-2X ‘ (3 ) 3 3 + 3
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Analytical Solutions to Systems of First Order ODEs CASE 1: Solving X/ = Anx n with n different eigenvalues

: Solving = ; with complex eigenvalues
CASE 2: Solving A, th I g |

CASE 3: Solving X « n With repeated eigenvalues

’ CASE 1: Solving X ' = AX, A,xn, with n different eigenvalues‘

— Consider the (modified form of the) homogeneous

system from EXAMPLE 2, < [ ; ] = [ _gﬁ 71 ] [ ; } Find a

general solution.

First we find the eigenvalues and corresponding eigenvectors of [ 7‘2‘;2 _1 } by
solving
4/3 — -1 4 ) 2 2 7 2
0= =(==2MNA-A)—==X—-=A4+=-=0
—-2/3 1-2X ‘ (3 ) 3 3 + 3

=332 -7A4+2=0 or BA-1)(A—2)=0.
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. N - Finding Eigenvalues and Eigenvectors Using Matlab
Analytical Solutions to Systems of First Order ODEs CASE 1: Solving ¥/ —

Apx n with n different eigenvalues
with complex eigenvalues
« n With repeated eigenvalues

CASE 2: Solving
CASE 3: Solving X

’ CASE 1: Solving X ' = AX, A,xn, with n different eigenvalues‘

— Consider the (modified form of the) homogeneous
4/3 -1 .
system from EXAMPLE 2, < [ ; ] = [ _2§3 1 ] [ x } Find a
general solution.

First we find the eigenvalues and corresponding eigenvectors of [ 7‘2‘;2 _1 } by

solving

4/3 — -1 4 ) 2 2 7 2
0= =(-=NA-X)]-Z2=X--A+Z=0
-2/3 17/\‘ (3 ) 3 3 +3

=332 -7A4+2=0 or BA-1)(A—2)=0.

So A1 = % and Ay = 2 are the two (different) eigenvalues of A = { _g?g 71 }
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Finding Eigenvalues and Eigenvectors Using Matlab
CASE 1: Solving X X, Anx n with n different eigenvalues

Analytical Solutions to Systems of First Order ODEs

CASE 2: Solving / A with complex eigenvalues
CASE 3: Solving X AX, / with repeated eigenvalues

REMINDER: Solving < [ ; } = [ 73?3 71 } [ ; }, eigenvalues %,2.

> To find an eigenvector ¢ = [cy, cz]T corresponding to eigenvalue

A1 = %, we solve (A — 1I)¢ =0,
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Analytical Solutions to Systems of First Order ODEs

REMINDER: Solving < [ ; } = [ 43 -1 } [ ; }, eigenvalues %,2.

> To find an eigenvector ¢ = [cy, cz]T corresponding to eigenvalue

A1 = 3, we solve (A — 3I)¢ = 0, or equivalently

[ 3llal=[e] =

25 /131



Finding E|oenvalues and Eigenvectors Using Matlab
CASE 1: Solving X/ = AX, Apx n with n different eigenvalues
, Apnx n With complex eigenvalues
« n With repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

REMINDER: Solving < [ ; } = [ 43 -1 } [ ; }, eigenvalues %,2.

> To find an eigenvector ¢ = [cy, cz]T corresponding to eigenvalue

A1 = 3, we solve (A — 3I)¢ = 0, or equivalently

[2n 2llal=lo] = a=eme=[y]

is an eigenvector (c; = 1) corresponding to eigenvalue A\; = %
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Analytical Solutions to Systems of First Order ODEs CASE 1: Solving ¥/ — A%, A5 with nidifferent eigenvalues
, A

, with complex eigenvalues
« n With repeated eigenvalues

REMINDER: Solving < [ ; } = [ 73?3 71 } [ ; }, eigenvalues %,2.

> To find an eigenvector ¢ = [cy, cz]T corresponding to eigenvalue
A1 = 3, we solve (A — 3I)@ =0, or equivalently

[2n 2llal=lo] = a=eme=[y]

1

is an eigenvector (c; = 1) corresponding to eigenvalue A\; = 3

» Similarly, to find an eigenvector ¢ = [c1, o] corresponding to
eigenvalue A, = 2, we solve (A — 2I)¢ =0,
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A1 = 3, we solve (A — 3I)@ =0, or equivalently

[2n 2llal=lo] = a=eme=[y]

1

is an eigenvector (c; = 1) corresponding to eigenvalue A\; = 3
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Finding Eigenvalues and Eigenvectors Using Matlab
CASE 1: Solving X/ X, Anx n with n different eigenvalues

Analytical Solutions to Systems of First Order ODEs

CASE 2: Solving Anx n with complex eigenvalues
CASE 3: Solving X , Apx n with repeated eigenvalues

REMINDER: Solving < [ . ] - [ 7;;3 - } [ ; ] eigenvalues 3, 2.

> To find an eigenvector C = [cy, cz]T corresponding to eigenvalue

=

A1 = %, we solve (A — 1I)¢ =0, or equivalently

[2n 2llal=lo] = a=eme=[y]

is an eigenvector (c; = 1) corresponding to eigenvalue A\; = %
» Similarly, to find an eigenvector ¢ = [c1, o] corresponding to

eigenvalue Ay = 2, we solve (A — 21)& = 0, or equivalently

s alla]=le] 5 amgames[ ]

is an eigenvector corresponding to (c; = 3) eigenvalue Ay = 2.
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. . - Finding E|oenvalues and Eigenvectors Using Matlab
Analytical Solutions to Systems of First Order ODEs CASE 1: Solving ¥/ — A%, A5 with nidifferent eigenvalues
, A

, with complex eigenvalues
« n With repeated eigenvalues

REMINDER: Solving < [ . ] - [ 7;;3 - } [ ; ] eigenvalues 3, 2.

> To find an eigenvector ¢ = [cy, cz]T corresponding to eigenvalue

A1 = 3, we solve (A — 3I)¢ = 0, or equivalently
1 -1 . 1
b A2 18] - e[

is an eigenvector (c; = 1) corresponding to eigenvalue A\; = %

» Similarly, to find an eigenvector ¢ = [c1, o] corresponding to
eigenvalue A, = 2, we solve (A — 2I)¢ = 0, or equivalently

(37 2][2]-[8] » = fames] 2]

is an eigenvector corresponding to (c; = 3) eigenvalue Ay = 2.

» And a general solution is
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Finding Eigenvalues and Eigenvectors Using Matlab

CASE 1: Solving X nx n With n different eigenvalues
nx n With complex eigenvalues
2% n With repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

REMINDER: Solving < [ . ] - [ 7;;3 - } [ ; ] eigenvalues 3, 2.

> To find an eigenvector C = [cy, cz]T corresponding to eigenvalue

=

A1 = %, we solve (A — 1I)¢ =0, or equivalently

[2n 2llal=lo] = a=eme=[y]

is an eigenvector (c; = 1) corresponding to eigenvalue A\; = %
» Similarly, to find an eigenvector ¢ = [c1, o] corresponding to

eigenvalue Ay = 2, we solve (A — 21)& = 0, or equivalently

s alla]=le] 5 amgames[ ]

is an eigenvector corresponding to (c; = 3) eigenvalue Ay = 2.

» And a general solution is

NEIEHEI S

and B, are arbitrary constants.
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Analytical Solutions to Systems of First Order ODEs CASE 1: Solving ¥ %, Ans n with n different ei

CASE 2: Solving nx n With complex eigenvalues
CASE 3: Solving X nx n With repeated eigenvalues

s Recall from EXAMPLE 2 of the

Supplementary Lecture on Eigenvalues/Eigenvectors that
A= { (25 ‘;’ } has eigenvalue \; = 7 with corresponding
1

eigenvector [ 1 } and eigenvalue \, = —4 with

corresponding eigenvector { ’2 }

Use this information to find a general solution to

X(t) = AX.
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Analytical Solutions to Systems of First Order ODEs CASE 1: Solving ¥

X, A,7 x n With n different ei
CASE 2: Solving nx n With complex eigenvalues
CASE 3: Solving X nx n With repeated eigenvalues

s Recall from EXAMPLE 2 of the

Supplementary Lecture on Eigenvalues/Eigenvectors that

A= { (25 ‘;’ } has eigenvalue \; = 7 with corresponding

eigenvector [ !

1 } and eigenvalue \, = —4 with

corresponding eigenvector { ’2 }

Use this information to find a general solution to

X(t) = AX.
» [ANSWER:| X(t) = By 1 et + B, _6 e *t, where B;

and B, are arbitrary constants.
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. . - Finding E|oenvalues and Eigenvectors Using Matlab
Analytical Solutions to Systems of First Order ODEs CASE 1: Solving ¥/ — A%, A5 with nidifferent eigenvalues
, A

, with complex eigenvalues
« n With repeated eigenvalues

— Similarly, from EXAMPLE 3 of the Supplementary

2 0 o
Lecture on Eigenvalues/Eigenvectors, since for A= | —4 -5 0
1 0 4
we have eigenvalues 2, —5, and 4 with corresponding eigenvectors
—14 0 0
8 1 |, and | 0 | respectively, then a general solution to
7 0 1
X =AXis
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Analytical Solutions to Systems of First Order ODEs CASE 1: Solving X/ = Anx n with n different eigenvalues

: Solving = ; with complex eigenvalues
CASE 2: Solving A, th I g |

CASE 3: Solving X « n With repeated eigenvalues

— Similarly, from EXAMPLE 3 of the Supplementary

2 0 o
Lecture on Eigenvalues/Eigenvectors, since for A= | —4 -5 0
1 0 4
we have eigenvalues 2, —5, and 4 with corresponding eigenvectors
—14 0 0
8 |, | 1 |,and | 0 [ respectively, then a general solution to
7 0 1
X = AX is
—14 0 0
=B 8 | +B | 1 |e®+B3| 0 [e&*,
7 0 1

where By, By, and Bjs are arbitrary constants.
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. . - Finding E|genv1lues and Eigenvectors Using Matlab
Analytical Solutions to Systems of First Order ODEs CASE 1: Solving ¥ A

X, A,7 % n With n different ei
CASE 2: Solving nx n With complex eigenvalues
CASE 3: Solving X nx n With repeated eigenvalues

< |EXAMPLE 7 | Similarly, from EXAMPLE 3 of the Supplementary
2 0 o
Lecture on Eigenvalues/Eigenvectors, since for A= | —4 -5 0
1 0 4
we have eigenvalues 2, —5, and 4 with corresponding eigenvectors
—14 0 0
8 |, | 1 |,and | 0 [ respectively, then a general solution to
7 0 1
X = AX is
—14 0 0
=B 8 | +B | 1 |e®+B3| 0 [e&*,
7 0 1

where By, By, and Bjs are arbitrary constants.

» NOTE since the coefficient matrix A in X = AX is (lower)
triangular, we can also solve this system by solving for x;(t), then
substituting that into the second equation and solving for x(t),
then substituting those two solutions into the third equation and
solving for x3(t).
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CASE 1: Solving X/ Apx n with n different

CASE 2: Solving / Anx n with complex eigenvalues
. , with repeated eigenvalues

CASE 3: Solving X

Analytical Solutions to Systems of First Order ODEs

! 3 00 x
< |EXAMPLE 8 | Solve the system | y | =| 0 -1 o y
z 0 0 2 z
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CASE 1: Solving X

CASE 2: Solving X’ / A with complex eigenvalues
CASE 3: Solving X AX, / with repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

x 1’ 3 00 x
< |EXAMPLE 8 | Solve the system | y | =| 0 -1 o y
z 0 0 2 z

< | ANSWER | There is no need to find eigenvalues and eigenvectors!!!
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AX, Apx n with n different eigenvalues

CASE 1: Solving X/
ith complex eigenvalues
with repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

x 1’ 3 00 x
< |EXAMPLE 8 | Solve the system | y | =| 0 -1 o y
z 0 0 2 z

< | ANSWER | There is no need to find eigenvalues and eigenvectors!!!
Since the coefficient matrix is a diagonal matrix, these are
de-coupled equations, meaning that we can just solve them

individually.
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ith complex eigenvalues
with repeated eigenvalues

i
X 3 0
< |EXAMPLE 8 | Solve the system | y | =| 0 -1 o y
0 0 2 z

z

< | ANSWER | There is no need to find eigenvalues and eigenvectors!!!

Since the coefficient matrix is a diagonal matrix, these are
de-coupled equations, meaning that we can just solve them

individually.
The first equation is x’ = 3x =
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Analytical Solutions to Systems of First Order ODEs CASE 1: Solving ¥/ — AR A5 with nidifferent eigenvalues

ith complex eigenvalues
with repeated eigenvalues

! 3

X 0
< |EXAMPLE 8 | Solve the system | y | =| 0 -1 o y
0 0 2 z

z

< | ANSWER | There is no need to find eigenvalues and eigenvectors!!!

Since the coefficient matrix is a diagonal matrix, these are
de-coupled equations, meaning that we can just solve them

individually.
The first equation is x’ = 3x = x = Bye3' (where B; an arbitrary

constant).
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Analytical Solutions to Systems of First Order ODEs CASE 1: Solving ¥/ — AR A5 with nidifferent eigenvalues

ith complex eigenvalues
with repeated eigenvalues

/

X 3 0 0 X
< |EXAMPLE 8 | Solve the system | y | =| 0 -1 o y
z 0 0 2 z

< | ANSWER | There is no need to find eigenvalues and eigenvectors!!!

Since the coefficient matrix is a diagonal matrix, these are
de-coupled equations, meaning that we can just solve them

individually.

The first equation is x’ = 3x = x = Bye3' (where B; an arbitrary
constant).

The second equation is y’' = f%y =y = Bye it (where B, an

arbitrary constant).
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Analytical Solutions to Systems of First Order ODEs CASE 1: Solving %/ %2 Ap s with nidifferent eigenvalues

CASE 2: Solving Anx n with complex eigenvalues
CASE 3: Solving X , Apx n with repeated eigenvalues

/

x 3 00
< |EXAMPLE 8 | Solve the system | y | =| 0 -1 o0
0 0 2

z

< | ANSWER | There is no need to find eigenvalues and eigenvectors!!!

Since the coefficient matrix is a diagonal matrix, these are
de-coupled equations, meaning that we can just solve them

N <

individually.

The first equation is x’ = 3x = x = Bye3' (where B; an arbitrary
constant).

The second equation is y’' = f%y =y = Bye it (where B, an

arbitrary constant).
The third equation is z/ = 2z = z = Bze?' (where Bs an arbitrary
constant).
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. N - Finding Eigenvalues and Eigenvectors Using Matlab
Analytical Solutions to Systems of First Order ODEs CASE 1: Solving %/ =

X, Anx n With n different eigenvalues
CASE 2: Solving Anx n with complex eigenvalues
CASE 3: Solving X , Apx n with repeated eigenvalues

/

x 3 00
< |EXAMPLE 8 | Solve the system | y | =| 0 -1 o0
0 0 2

z

< | ANSWER | There is no need to find eigenvalues and eigenvectors!!!

Since the coefficient matrix is a diagonal matrix, these are
de-coupled equations, meaning that we can just solve them

N <

individually.

The first equation is x’ = 3x = x = Bye3' (where B; an arbitrary
constant).

The second equation is y’' = f%y =y = Bye it (where B, an

arbitrary constant).
The third equation is z/ = 2z = z = Bze?' (where Bs an arbitrary
constant).

< So the general solution is
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Analytical Solutions to Systems of First Order ODEs CASE 1: Solving X/ = Anx n with n different eigenvalues

: Solving = ; with complex eigenvalues
CASE 2: Solving A, th I g |

CASE 3: Solving X « n With repeated eigenvalues

/

x 3 00
< |EXAMPLE 8 | Solve the system | y | =| 0 -1 o0
0 0 2

z

< | ANSWER | There is no need to find eigenvalues and eigenvectors!!!
Since the coefficient matrix is a diagonal matrix, these are

de-coupled equations, meaning that we can just solve them

N <

individually.

The first equation is x’ = 3x = x = Bye3' (where B; an arbitrary
constant).

The second equation is y’' = f%y =y = Bye it (where B, an

arbitrary constant).

The third equation is z/ = 2z = z = Bze?' (where Bs an arbitrary
constant).
< So the general solution is

X 1 0 ) 0
R=|y |=B1| 0 |e¥+B| 1 |est+B5| 0 |e&*.
z 0 0 1
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Finding Eigenvalues and Eigenvectors Using Matlab

CASE 1: Solving X nx n With n different eigenvalues
nx n With complex eigenvalues
2% n With repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

< NOTE it will always be similarly easy to solve systems of
the form X ' = DX where D is a diagonal matrix.
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8 nx n With n different eigenvalues

% n With complex eigenvalues
« n With repeated eigenvalues

< NOTE it will always be similarly easy to solve systems of
the form X ' = DX where D is a diagonal matrix. With
this in mind, I'll present an alternative way of viewing the
solution of a more general X ' = AX which uses the
diagonalisation of A (if it exists) and is useful when
solving non-homogeneous systems.
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nx n With n different eigenvalues
% n With complex eigenvalues
« n With repeated eigenvalues

< NOTE it will always be similarly easy to solve systems of
the form X ' = DX where D is a diagonal matrix. With
this in mind, I'll present an alternative way of viewing the
solution of a more general X ' = AX which uses the
diagonalisation of A (if it exists) and is useful when
solving non-homogeneous systems.

< This leads to another useful way of viewing the solution
of X' = AX when A,«, has n linearly independent
eigenvectors, which involves the diagonalisation of A.
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Finding Eigenvalues and Eigenvectors Using Matlab
CASE 1: Solving X/ = AX, A, , with n different eigenvalues

Analytical Solutions to Systems of First Order ODEs

CASE 2: Solvi Anx n with complex eigenvalues
CASE 3: Solving X nx n With repeated eigenvalues

< NOTE it will always be similarly easy to solve systems of
the form X ' = DX where D is a diagonal matrix. With
this in mind, I'll present an alternative way of viewing the
solution of a more general X ' = AX which uses the
diagonalisation of A (if it exists) and is useful when
solving non-homogeneous systems.

< This leads to another useful way of viewing the solution
of X' = AX when A,«, has n linearly independent
eigenvectors, which involves the diagonalisation of A.

Although this approach is equivalent to the one we have
been using so far, it has the advantage of being very
useful when solving NON-HOMOGENEQOUS problems (so
we don’t have to use the Method of Undetermined
Coefficients or other approaches).
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Finding Eloenvalues and Eigenvectors Using Matlab
CASE 1: Solving X/ Apx n with n different

Analytical Solutions to Systems of First Order ODEs

CASE 2: Solving / Anx n with complex eigenvalues
CASE 3: Solving X AX, A, x n with repeated eigenvalues

< | SOLVING % = AX USING THE DIAGONALISATION OF A:
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Finding E|oenvalues and Eigenvectors Using Matlab
CASE 1: Solving X/ = AX, Apx n with n different eigenvalues
, Apnx n With complex eigenvalues
« n With repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

< | SOLVING % = AX USING THE DIAGONALISATION OF A:

» Assuming A can be diagonalised so that P"'AP =D is a
diagonal matrix (see the Supplementary Lecture on
Eigenvalues/Eigenvectors for details), then A = PDP—!.
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Finding E|oenvalues and Eigenvectors Using Matlab
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CASE 2: Solving = AX, A,x n with complex eigenvalues
CASE 3: Solving X/ = AX, A,y , with repeated eigenvalues

‘ CASE 2: Solving X ' = AX, A,x, with complex eigenvalues ‘

‘ (but still n linearly independent eigenvectors) ‘

< Approach will be similar to how we extract real valued (linearly independent)
solutions to ax’’ + bx’ + cx = 0 when the characteristic polynomial ar? + br + ¢
had (non-real) complex roots (ignore this comment if you have not solved
second order constant coefficient linear differential equations before).
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It is not difficult to show that the corresponding eigenvectors also occur in
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then X is an eigenvector corresponding to the eigenvalue a — ib (X denotes the
vector whose entries are the complex conjugates of the corresponding entries in

%).
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this equation (recalling that A has only real entries so A = A and that
aff = ap), then AX = (a — ib)X.

AX = (a + ib)X so taking the complex conjugate of both sides of

33/131



Finding Elgenvalues and Eigenvectors Using Matlab

Analytical Solutions to Systems of First Order ODEs CASE 1: Solving = A Ay it i G G E s

CASE 2: Solving X AX, An><n with complex eigenvalues
CASE 3: Solving X’ Apx n with repeated eigenvalues

< So let's see how to extract real solutions from solutions which involve
eigenvalue \; = a + ib with corresponding eigenvector i + iV (where 4 and V
have real entries only) and the complex conjugate eigenvalue A\ = a — ib with
corresponding eigenvector i — iV.
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< So let's see how to extract real solutions from solutions which involve
eigenvalue \; = a + ib with corresponding eigenvector i + iV (where 4 and V
have real entries only) and the complex conjugate eigenvalue A\ = a — ib with
corresponding eigenvector i — iV.

Recall that in general if r is an eigenvalue of A and ¢ is the corresponding
eigenvector, then e is a solution to X / = AX.
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CASE 3: Solving X’ Apx n with repeated eigenvalues

< So let's see how to extract real solutions from solutions which involve
eigenvalue \; = a + ib with corresponding eigenvector i + iV (where 4 and V
have real entries only) and the complex conjugate eigenvalue A\ = a — ib with
corresponding eigenvector i — iV.

» Recall that in general if r is an eigenvalue of A and ¢ is the corresponding
eigenvector, then e is a solution to X / = AX.
Applying that in this case, we have (complex-valued) solutions (4 + iV)e
and (& — iv)e®t bt

at+ibt

~~ Clearly, since both complex-valued vector functions above are solutions to
X ! = AX then so are their real and imaginary parts. Without loss of generality,

(b + iv)e® Pt = (7 + iv)(e® cos bt + ie® sin bt) =
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~~ Clearly, since both complex-valued vector functions above are solutions to
X ! = AX then so are their real and imaginary parts. Without loss of generality,

(b + iv)e® Pt = (7 + iv)(e® cos bt + ie® sin bt) =

e (i@ cos bt — V'sin bt) + i e®(iisin bt + V cos bt).
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CASE 2: Solving = AX, A,x n with complex eigenvalues
CASE 3: Solving X/ = AX, A,y , with repeated eigenvalues

< So let's see how to extract real solutions from solutions which involve
eigenvalue \; = a + ib with corresponding eigenvector i + iV (where 4 and V
have real entries only) and the complex conjugate eigenvalue A\ = a — ib with
corresponding eigenvector i — iV.

» Recall that in general if r is an eigenvalue of A and ¢ is the corresponding
eigenvector, then e is a solution to X / = AX.
Applying that in this case, we have (complex-valued) solutions (4 + iV)e
and (& — iv)e®t bt

at+ibt

~~ Clearly, since both complex-valued vector functions above are solutions to
X ! = AX then so are their real and imaginary parts. Without loss of generality,

(b + iv)e® Pt = (7 + iv)(e® cos bt + ie® sin bt) =

e (i cos bt — V'sin bt) + i e®(iisin bt + V cos bt).
So the two vector functions e?!(i cos bt — Vsin bt) and e (dsin bt + v cos bt) are
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— | SUMMARY | Instead of trying to remember the previous result as a

formula, just use the following steps to get 2 linearly
independent solutions from two complex conjugate eigenvalues a = bi

to the matrix A when solving X /' = AX:
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CASE 2: Solving X / = AR, A, with complex eigenvalues
CASE 3: Solving X/ = AX, A,y , with repeated eigenvalues

— | SUMMARY | Instead of trying to remember the previous result as a

formula, just use the following steps to get 2 linearly

independent solutions from two complex conjugate eigenvalues a = bi
to the matrix A when solving X /' = AX:

1. Pick ONE of the eigenvalues, \;y = a+ ib or A\, = a — ib, and
find the corresponding eigenvector vV by solving
(A — AI)V = 0 for v.
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to the matrix A when solving X /' = AX:
1. Pick ONE of the eigenvalues, \;y = a+ ib or A\, = a — ib, and
find the corresponding eigenvector v by solving
(A— M)V =0 for v.
2. A COMPLEX-VALUED solution to X ’ = AX would then be
i = eMV|or |t = eV |depending on which eigenvalue,

A1 or Ay, was used in Step 1.
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3. Write the complex-valued solution, d, from Step 2 in terms of

its real and imaginary parts: 4 = ; + i, where both ;7
and u; are vectors containing only real-valued entries.
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3. Write the complex-valued solution, d, from Step 2 in terms of
its real and imaginary parts: 4 = ; + i, where both ;7
and u; are vectors containing only real-valued entries.

4. i and a3 will be two linearly independent REAL-VALUED
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CASE 2: Solving Apx n with complex eigenvalues
CASE 3: Solving X X, Apx n With repeated eigenvalues

— | SUMMARY | Instead of trying to remember the previous result as a

formula, just use the following steps to get 2 linearly

independent solutions from two complex conjugate eigenvalues a = bi
to the matrix A when solving X /' = AX:

1. Pick ONE of the eigenvalues, \;y = a+ ib or A\, = a — ib, and
find the corresponding eigenvector v by solving
(A— M)V =0 for v.

2. A MPLEX-VALUED solution to X = AX would then be

i = eMV|or |t = eV |depending on which eigenvalue,
A1 or Ay, was used in Step 1.

3. Write the complex-valued solution, d, from Step 2 in terms of
its real and imaginary parts: 4 = ; + i, where both ;7
and u; are vectors containing only real-valued entries.

4. i and a3 will be two linearly independent REAL-VALUED
solutions to X / = AX.

So, for example, any general solution to X / = AX would include the terms
Byuj + By, where By and B; are arbitrary constants.
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CASE 2: Solving = AX, A,x n with complex eigenvalues
CASE 3: Solving X/ = AX, A,y , with repeated eigenvalues

< | EXAMPLE 11 | Solve the initial value problem X’ = AX,

2(0):{1},WhereA:[i :g ]
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CASE 2: Solving X Ax Apx n with complex eigenvalues
CASE 3: Solving X, Apx n with repeated eigenvalues

— Solve the initial value problem X ' = AX,
R(0) = [ i ] where A = [ i :g ]
> First to find the eigenvalues we solve ’ ! _’1\ _3 :i =0
= (1-A)(-3-A)+5=00r N2 +2X+2=0=
A=-—-1+4i.
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CASE 3: Solving X X, Apx n with repeated eigenvalues
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R(0) = [ i ] where A = [ i :g ]
> First to find the eigenvalues we solve ’ ! _’1\ _3 :i =0
= (1-A)(-3-A)+5=00r N2 +2X+2=0=
A=—-1%i.
Next, let's select the eigenvalue A = -1+ and find a corresponding

eigenvector:
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22— -5 v 0 . . 2410
[ 1 —o_; } [ v; } = { 0 } BOTH equations = v; = (2+i)v» so [ 1 }
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So a complex valued solution to X / = AX is
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CASE 2: Solving Ax Apx n with complex eigenvalues

/

CASE 3: Solving X © = AX, A, % with repeated eigenvalues

REMINDER: General solution

2cost —sint _t
cost } + Bae [

2sint 4+ cost

X(t) = Bye™ sint

Next, we use the initial condition X(0) = to find B; and

B;.
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CASE 1: Solving X
CASE 2: Solvi
CASE 3: Solvi

X, Apx n with n different eigenvalues
AX, Apx n with complex eigenvalues
Apx n with repeated eigenvalues

REMINDER: General solution

2cost —sint 2sint 4+ cost
X(t) = Bje—t Bye~t .
X(t) 1€ cost + Bee sint

Next, we use the initial condition X(0) = to find B; and

B,. We get )
2B; + B,

B; N

= Bl =1 and Bz = —1.
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CASE 2: Solving nx n With complex eigenvalues
CASE 3: Solving X X, Apx n With repeated eigenvalues

REMINDER: General solution
2cost —sint

X(t) = Bre™ cost } +Be™t [ 25instir-1'-tCOSt
Next, we use the initial condition X(0) = 1 to find B; and
B,. We get _'
2Bl + BQ i ]_
B, 1 ]

= Bl =1 and Bz = —1.

So the solution to the initial value problem is
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REMINDER: General solution
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X(t) = Bre” cost } +Be™t [ 25instir-1'-tCOSt
Next, we use the initial condition X(0) = 1 to find B; and
B,. We get _'
2Bl + BQ i ]_
B, 1 ]

= Bl =1 and Bz = —1.

So the solution to the initial value problem is

(1) = et 2cost —sint ot 2sint +cost

cost sint

_+| cost —3sint
cost —sint
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CASE 2: Solving = AX, A,x n with complex eigenvalues
CASE 3: Solving X/ = AX, A,y , with repeated eigenvalues

< | EXAMPLE 12| Find the general solution of X ' = AX, where

1 0 0
A= 2 1 =2
3 2 1
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CASE 2: Solving X Ax Apx n with complex eigenvalues
CASE 3: Solving X, Apx n with repeated eigenvalues

< | EXAMPLE 12| Find the general solution of X ' = AX, where

1 0 0
A= 2 1 =2
3 2 1
1—X 0 0
» First to find the eigenvalues we solve 2 1-2A -2 |=0
3 2 1—-X
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CASE 2: Solving Apx n with complex eigenvalues
CASE 3: Solving X X, Apx n with repeated eigenvalues

< | EXAMPLE 12| Find the general solution of X ' = AX, where

1 0 0
A= 2 1 =2
3 2 1
1—X 0 0
» First to find the eigenvalues we solve 2 1-2A -2 =0
3 2 1—-X
= (1=MN[(1-A)2+4=0s0[A=1]or (1-A?2=—4=

-1z
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Apx n with complex eigenvalues
2% = . 3
CASE 3: Solving X © = AX, A, % with repeated eigenvalues

1—X 0 0
» First to find the eigenvalues we solve 2 1-2A -2 |=0
3 2 1—-X
( =—4=

Next, an eigenvector corresponding to eigenvalue A = 1 is found by
solving
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CASE 2: Solving nx n With complex eigenvalues
CASE 3: Solving X X, Apx n With repeated eigenvalues

1—X 0 0
» First to find the eigenvalues we solve 2 1-2A -2 =0
3 2 1—-X
= (1=MN[(1-A)2+4=0s0[A=1]or (1-A?2=—4=

-1z

Next, an eigenvector corresponding to eigenvalue A = 1 is found by
solving

00 0 vi 0
2 0 -2 wl=1]0]=
32 0 va 0
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CASE 2: Solving nx n With complex eigenvalues
CASE 3: Solving X X, Apx n With repeated eigenvalues

1—X 0 0
» First to find the eigenvalues we solve 2 1-2A -2 =0
3 2 1—-X
= (1=MN[(1-A)2+4=0s0[A=1]or (1-A?2=—4=

-1z

Next, an eigenvector corresponding to eigenvalue A = 1 is found by
solving

0 0 0 Vi 0 3 2
2 0 -2 Vo = 0 :>V3:V1,V2:—§V1:>\7: -3
3 2 0 V3 0 2

is an eigenvector corresponding to eigenvalue A = 1.
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CASE 2: Solving X AX, An><n with complex eigenvalues
CASE 3: Solving X’ Apx n with repeated eigenvalues

REMINDER: v = | —3 | is an eigenvector of A corresponding to eigenvalue A =1

< Next we pick eigenvalue 1 + 2i and find a corresponding eigenvector by solving
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CASE 2: Solving = AX, A,x n with complex eigenvalues
CASE 3: Solving X/ = AX, A,y , with repeated eigenvalues

2
REMINDER: v = | —3 | is an eigenvector of A corresponding to eigenvalue A =1
2
< Next we pick eigenvalue 1 + 2i and find a corresponding eigenvector by solving
—2i 0 0 u 0
2 =2i =2 uw | =10 =
3 2 =2 u3 0
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2
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CASE 2: Solving = AX, A,x n with complex eigenvalues
CASE 3: Solving X/ = AX, A,y , with repeated eigenvalues

2
REMINDER: v = | —3 | is an eigenvector of A corresponding to eigenvalue A =1
2
< Next we pick eigenvalue 1 + 2i and find a corresponding eigenvector by solving
—2i 0 0 u 0
2 —2i —2 us = 0 = uy = 0, uz = —upi.
3 2 =2 u3 0

So, setting up = 1, an eigenvector corresponding to eigenvalue A =1+ 2/ is
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2
REMINDER: v = | —3 | is an eigenvector of A corresponding to eigenvalue A =1
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3 2 =2 u3 0
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REMINDER: v = | —3 | is an eigenvector of A corresponding to eigenvalue A =1
2
< Next we pick eigenvalue 1 + 2i and find a corresponding eigenvector by solving
—2i 0 0 u 0
2 —2i —2 us = 0 = uy = 0, uz = —upi.
3 2 =2 u3 0
So, setting up = 1, an eigenvector corresponding to eigenvalue A =1+ 2/ is
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0
U= 1 |. And so a complex-valued solution to X / = AX is
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2
< Next we pick eigenvalue 1 + 2i and find a corresponding eigenvector by solving
—2i 0 0 u 0
2 =2i —2 up = 0 = up =0, u3 = —uwi.
3 2 =2 u3 0
So, setting up = 1, an eigenvector corresponding to eigenvalue A =1+ 2/ is
0
U= 1 |. And so a complex-valued solution to X / = AX is
—i
) 0 0 0 0
20t |1 | = ef(cos2t+isin2t) | 1 = e'| cos2t |[+iet sin 2t
—i —i sin 2t — cos 2t
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» with n different eigenvalues

CASE 2: Solving X Ax Apx n with complex eigenvalues

CASE 3: Solving X, Apx n with repeated eigenvalues
2
REMINDER: v = | —3 | is an eigenvector of A corresponding to eigenvalue A =1
2
— Next we pick eigenvalue 1 4 2/ and find a corresponding eigenvector by solving
—2i 0 0 uy 0
2 —2i -2 us = 0 = uy = 0, uz = —upi.
3 2 =2 u3 0

So, setting up = 1, an eigenvector corresponding to eigenvalue A =1+ 2/ is
0

U= 1 |. And so a complex-valued solution to X / = AX is
—i
) 0 0 0 0
20t |1 | = ef(cos2t+isin2t) | 1 = e'| cos2t |[+iet sin 2t
—i —i sin 2t — cos 2t

And a general solution to X / = AX is

2 0 0
X(t) = Bie' | =3 | + Bye' | cos2t | + Bse' sin 2t ,
2 sin 2t — cos 2t

where Bi, By, and Bs are arbitrary constants.
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CASE 1: Solving X’ Ap x n with n different eigenvalues
CASE 2: Solving / Ap x n with complex eigenvalues
CASE 3: Solving X/ o A,,><,7 with repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

CASE 3: Solving X ' = AX, A,x, with repeated eigenvalues‘

< First, if A,xn still has n linearly independent eigenvectors, then
the approach is exactly as in CASE 1 (see EXAMPLES 5-10).
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the approach is exactly as in CASE 1 (see EXAMPLES 5-10).

— Recall from EXAMPLES 4, 9, and 11 of the
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0o 0 -2
matrix A= | 1 2 1 | has eigenvalues A = 1,2,2, but that the
1 0 3

repeated eigenvalue of 2 had TWO linearly independent
eigenvectors.
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CASE 2: Solvir / Anx n with complex eigenvalues
CASE 3: Solving X, Apx n with repeated eigenvalues

‘ CASE 3: Solving X ' = AX, A,xn with repeated eigenvalues ‘

< First, if A,xn still has n linearly independent eigenvectors, then
the approach is exactly as in CASE 1 (see EXAMPLES 5-10).

— Recall from EXAMPLES 4, 9, and 11 of the

Supplementary Lecture on Eigenvalues/Eigenvectors that the

0o 0 -2
matrix A= | 1 2 1 | has eigenvalues A = 1,2,2, but that the
1 0 3

repeated eigenvalue of 2 had TWO linearly independent
eigenvectors. So that in total A had THREE linearly independent

-2 -1 0
eigenvectors p; = 1|, p= 0 |, and g3 = 1 respectively.
1 1 0
So a general solution to X = AR is
Xl(t) -2 -1 0
X(t) = | x(t) | = Byet 1 | + Bye?t 0 | +B3e* | 1 |,
x3(t) 1 1 0

where B, By, and Bs are arbitrary constants.
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CASE 2: Solving =A « n With complex eigenvalues
CASE 3: Solving X' = AX, A,y , with repeated eigenvalues

> So what really concerns us is the case where the multiplicity of a repeated
eigenvalue of A (= the number of times that the eigenvalue is a root of A’s
characteristic polynomial) is greater than the number of linearly independent
eigenvectors we can find for that eigenvalue - see, for example, EXAMPLE 10

of the Supplementary Lecture on Eigenvalues/Eigenvectors.
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> So what really concerns us is the case where the multiplicity of a repeated
eigenvalue of A (= the number of times that the eigenvalue is a root of A’s
characteristic polynomial) is greater than the number of linearly independent
eigenvectors we can find for that eigenvalue - see, for example, EXAMPLE 10
of the Supplementary Lecture on Eigenvalues/Eigenvectors. In this case, we
look for generalised eigenvectors corresponding to that repeated eigenvalue.
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> So what really concerns us is the case where the multiplicity of a repeated
eigenvalue of A (= the number of times that the eigenvalue is a root of A’s
characteristic polynomial) is greater than the number of linearly independent
eigenvectors we can find for that eigenvalue - see, for example, EXAMPLE 10
of the Supplementary Lecture on Eigenvalues/Eigenvectors. In this case, we
look for generalised eigenvectors corresponding to that repeated eigenvalue.

> The overall approach is similar to what we do when solving
ax"" 4+ bx" + ¢ = 0 and the characteristic equation ar?> + br +c =0
has a repeated root.
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characteristic polynomial) is greater than the number of linearly independent
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look for generalised eigenvectors corresponding to that repeated eigenvalue.

> The overall approach is similar to what we do when solving
ax"" 4+ bx" + ¢ = 0 and the characteristic equation ar?> + br +c =0
has a repeated root.

> E.g. Suppose A has eigenvalue of multiplicity TWO X with only 1 linearly
independent family of eigenvectors, with vV being one of them. So AV = AV.
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independent family of eigenvectors, with vV being one of them. So AV = AV. In
the past, we have assumed a solution to ¥ / = AX to be of the form e V.
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Ap x n with complex eigenvalues
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CASE 2: Solving X' = A .
CASE 3: Solving X' = AX, A,y , with repeated eigenvalues

> So what really concerns us is the case where the multiplicity of a repeated
eigenvalue of A (= the number of times that the eigenvalue is a root of A’s
characteristic polynomial) is greater than the number of linearly independent
eigenvectors we can find for that eigenvalue - see, for example, EXAMPLE 10
of the Supplementary Lecture on Eigenvalues/Eigenvectors. In this case, we
look for generalised eigenvectors corresponding to that repeated eigenvalue.

> The overall approach is similar to what we do when solving
ax"" 4+ bx" + ¢ = 0 and the characteristic equation ar?> + br +c =0
has a repeated root.

> E.g. Suppose A has eigenvalue of multiplicity TWO X with only 1 linearly
independent family of eigenvectors, with vV being one of them. So AV = AV. In
the past, we have assumed a solution to ¥ / = AX to be of the form e V.
Based on what we did for nt" order equations whose characteristic equations
had repeated roots, how do you propose we adjust the form of our solution
e MV if A is an eigenvalue of multiplicity TWO?
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CASE 1: Solving ¥/ = AX, A, , with n different eigenvalues
CASE 2: Solv ! nx n With complex eigenvalues
CASE 3: Solving X X, Apx n With repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

> So what really concerns us is the case where the multiplicity of a repeated
eigenvalue of A (= the number of times that the eigenvalue is a root of A’s
characteristic polynomial) is greater than the number of linearly independent
eigenvectors we can find for that eigenvalue - see, for example, EXAMPLE 10
of the Supplementary Lecture on Eigenvalues/Eigenvectors. In this case, we
look for generalised eigenvectors corresponding to that repeated eigenvalue.

> The overall approach is similar to what we do when solving
ax"" 4+ bx" + ¢ = 0 and the characteristic equation ar?> + br +c =0
has a repeated root.

> E.g. Suppose A has eigenvalue of multiplicity TWO X with only 1 linearly
independent family of eigenvectors, with vV being one of them. So AV = AV. In
the past, we have assumed a solution to ¥ / = AX to be of the form e V.
Based on what we did for nt" order equations whose characteristic equations
had repeated roots, how do you propose we adjust the form of our solution

Aty if X is an eigenvalue of multiplicity TWO?

ANSWER: let the solution X(t) take the form X(t) = te#i, where @ is a
constant vector to be determined.
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CASE 1: Solving 3/ = / nx n With n different eigenvalues
CASE 2: Solving Anx n with complex eigenvalues
CASE 3: Solving X' = AX, A,y , with repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs
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CASE 1: Solving 3/ = / n with n different eigenvalues
CASE 2: Solving Anx n with complex eigenvalues
CASE 3: Solving X' = AX, A,y , with repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

> X(t) = te M= % /(t) = e M+ Ate M.
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CASE 1: Solving 3/ = / n with n different eigenvalues
CASE 2: Solving Anx n with complex eigenvalues
CASE 3: Solving X' = AX, A,y , with repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs
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get
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CASE 1: Solving 3/ = / n with n different eigenvalues
CASE 2: Solving Anx n with complex eigenvalues
CASE 3: Solving X' = AX, A,y , with repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

> X(t) = te M = % /(t) = e i+ Ate i, Substituting this into ¥ / = AX, we
get
i+ AteMii = Atei = et + Aiite’t — Aiite™ = 0.
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CASE 2: Solving =A « n With complex eigenvalues
CASE 3: Solving X' = AX, A,y , with repeated eigenvalues

> X(t) = te M = % /(t) = e i+ Ate i, Substituting this into ¥ / = AX, we

get
eMT + e i = AteMiT = deM + Adte’ — Adte™ = 0.

This is only possible for all t if the coefficients of both et and te*t are zero
vectors.
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» with n different eigenvalues
CASE 2: Solving =A « n With complex eigenvalues
CASE 3: Solving X' = AX, A,y , with repeated eigenvalues

> X(t) = te M = % /(t) = e i+ Ate i, Substituting this into ¥ / = AX, we
get
M+ AteMii = AteMii = e + iiteM — Aiite’ = 0.

This is only possible for all t if the coefficients of both et and te*t are zero
vectors. In particular, we must have 4 = 0, so there is NO non-zero vector
solution (hence no eigenvector) if we assume the solution is of the form
R(t) = te .
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CASE 1: Solving > Ap x n with n different eigenvalues
CASE 2: Solving =A « n With complex eigenvalues
CASE 3: Solving X' = AX, A,y , with repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

> X(t) = te M = % /(t) = e i+ Ate i, Substituting this into ¥ / = AX, we
get
M+ AteMi = AteMT = e + Aite — Aute™ = 0.
This is only possible for all t if the coefficients of both et and te*t are zero
vectors. In particular, we must have 4 = 0, so there is NO non-zero vector
solution (hence no eigenvector) if we assume the solution is of the form
R(t) = te .
< So, observing the appearance of the e ! term when we substituted into the
ODE system, we adjust our assumption by including lower order terms:
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CASE 1: Solving > Ap x n with n different eigenvalues
CASE 2: Solving =A « n With complex eigenvalues
CASE 3: Solving X' = AX, A,y , with repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

> X(t) = te M = % /(t) = e i+ Ate i, Substituting this into ¥ / = AX, we
get
M+ AteMi = AteMT = e + Aite — Aute™ = 0.

This is only possible for all t if the coefficients of both et and te*t are zero
vectors. In particular, we must have 4 = 0, so there is NO non-zero vector
solution (hence no eigenvector) if we assume the solution is of the form
R(t) = te .

< So, observing the appearance of the e ! term when we substituted into the
ODE system, we adjust our assumption by including lower order terms:

Let X(t) = te*d + e i 3)

where (7 and 13 are constant vectors to be determined.
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CASE 1: Solving > Ap x n with n different eigenvalues
CASE 2: Solving =A « n With complex eigenvalues
CASE 3: Solving X' = AX, A,y , with repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

> X(t) = te il = X /(t) = e i + Ate*ii. Substituting this into X / = AX
get
M+ AteMi = AteMT = e + Aite — Aute™ = 0.

This is only possible for all t if the coefficients of both et and te*t are zero
vectors. In particular, we must have 4 = 0, so there is NO non-zero vector
solution (hence no eigenvector) if we assume the solution is of the form
R(t) = te .

< So, observing the appearance of the e ! term when we substituted into the
ODE system, we adjust our assumption by including lower order terms:

Let X(t) = te*d + e i 3)

where 7 and 0> are constant vectors to be determined.

X ’(t)
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CASE 1: Solving X/ A, % n with n different eigenvalues
CASE 2: Solving =A « n With complex eigenvalues
CASE 3: Solving X' = AX, A,y , with repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

> X(t) = te M = % /(t) = e i+ Ate i, Substituting this into ¥ / = AX, we
get
M+ AteMii = AteMii = e + iiteM — Aiite’ = 0.

This is only possible for all t if the coefficients of both et and te*t are zero
vectors. In particular, we must have i = 6, so there is NO non-zero vector
solution (hence no eigenvector) if we assume the solution is of the form
R(t) = te .

< So, observing the appearance of the e ! term when we substituted into the
ODE system, we adjust our assumption by including lower order terms:

Let X(t) = te*d + e i 3)

where 7 and 0> are constant vectors to be determined.
R(t) = Me M + e (a1 + M)
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CASE 1: Solving 3/ = / Ap, « n with n different eloenvalues
CASE 2: Solving X

CASE 3: Solving X

Analytical Solutions to Systems of First Order ODEs

> X(t) = te M = % /(t) = e i+ Ate i, Substituting this into ¥ / = AX, we
get
'+ Ate i = AteMid = et + Adte’ — Aiite™ = 0.
This is only possible for all t if the coefficients of both et and te*t are zero
vectors. In particular, we must have 4 = 0, so there is NO non-zero vector
solution (hence no eigenvector) if we assume the solution is of the form
R(t) = te .
< So, observing the appearance of the e ! term when we substituted into the
ODE system, we adjust our assumption by including lower order terms:

Let X(t) = te*d + e i 3)

where (7 and 13 are constant vectors to be determined.
R '(t) = Me i + e*(ai + M) and substituting into X / = AX,
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CASE 1: Solving 3/ = / Ap, « n with n different eloenvalues
CASE 2: Solving X

CASE 3: Solving X

Analytical Solutions to Systems of First Order ODEs

> X(t) = te M = % /(t) = e i+ Ate i, Substituting this into ¥ / = AX, we
get
'+ Ate i = AteMid = et + Adte’ — Aiite™ = 0.
This is only possible for all t if the coefficients of both et and te*t are zero
vectors. In particular, we must have 4 = 0, so there is NO non-zero vector
solution (hence no eigenvector) if we assume the solution is of the form
R(t) = te .
< So, observing the appearance of the e ! term when we substituted into the
ODE system, we adjust our assumption by including lower order terms:

Let X(t) = te*d + e i 3)

where (7 and 13 are constant vectors to be determined.
R '(t) = Me i + e*(ai + M) and substituting into X / = AX,

AteM i +eMN (d+ M) = Ate i +AeM iy = te M (Adi — Adi)+eM (i + A — Aj) = C.
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CASE 1: Solving 3/ = / Ap, « n with n different eloenvalues
CASE 2: Solving X

CASE 3: Solving X

Analytical Solutions to Systems of First Order ODEs

> X(t) = te M = % /(t) = e i+ Ate i, Substituting this into ¥ / = AX, we
get

th 4 AteMi = Ate™Mid = Ge’ + AdteM — Anite™ = 0.

This is only possible for all t if the coefficients of both et and te*t are zero
vectors. In particular, we must have 4 = 0, so there is NO non-zero vector
solution (hence no eigenvector) if we assume the solution is of the form
R(t) = te .

< So, observing the appearance of the e ! term when we substituted into the
ODE system, we adjust our assumption by including lower order terms:

Let X(t) = te*d + e i 3)

where 7 and 0> are constant vectors to be determined.
R '(t) = Me i + e*(ai + M) and substituting into X / = AX,
AteM i +eMN (d+ M) = Ate i +AeM iy = te M (Adi — Adi)+eM (i + A — Aj) = C.

So again, we must have \uj — Adj = 0 AND & + At — A = 0.
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CASE 1: Solving ¥/ = AX, A, , with n different eigenvalues
CASE 2: Solv ! nx n With complex eigenvalues
CASE 3: Solving X X, Apx n With repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

REMINDER: Aii — A = 0 AND @i + > — Ay = 0.

< The first equation is, of course, equivalent to Au; = Auy so that g
is simply an eigenvector of A corresponding to eigenvalue A (so it
would already be known!!!).
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CASE 3: Solving X X, Apx n With repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

REMINDER: Aii — A = 0 AND @i + > — Ay = 0.

< The first equation is, of course, equivalent to Au; = Auy so that g
is simply an eigenvector of A corresponding to eigenvalue A (so it
would already be known!!!).

< The second equation is equivalent to ‘ (A=) =w; ‘ and a

solution 15 is known as a generalised eigenvector of A.
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CASE 1: Solving / Ap x n with n different eigenvalues
CASE 2: Solving nx n With complex eigenvalues
CASE 3: Solving X X, Apx n with repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

REMINDER: Aii — A = 0 AND @i + > — Ay = 0.

< The first equation is, of course, equivalent to Au; = Auy so that g
is simply an eigenvector of A corresponding to eigenvalue A (so it
would already be known!!!).

< The second equation is equivalent to ‘ (A=) =w; ‘ and a

solution 15 is known as a generalised eigenvector of A.
< Returning to Equation (3), a solution to X ’ = AX is
x(t) = te*u; + e, where 0 is an eigenvector of A

corresponding to eigenvalue X\ and 3 is a GENERALISED

eigenvector of A corresponding to eigenvalue A. It can be shown

that this solution is linearly independent from %(t) = e*a3.
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CASE 1: Solving / Ap x n with n different eigenvalues
CASE 2: Solving nx n With complex eigenvalues
CASE 3: Solving X X, Apx n with repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

REMINDER: Aii — A = 0 AND @i + > — Ay = 0.

< The first equation is, of course, equivalent to Au; = Auy so that g
is simply an eigenvector of A corresponding to eigenvalue A (so it
would already be known!!!).

< The second equation is equivalent to ‘ (A=) =w; ‘ and a

solution 15 is known as a generalised eigenvector of A.
< Returning to Equation (3), a solution to X ’ = AX is

x(t) = te*u; + e, where 0 is an eigenvector of A
corresponding to eigenvalue X\ and 3 is a GENERALISED
eigenvector of A corresponding to eigenvalue A. It can be shown

that this solution is linearly independent from %(t) = e*a3.

> NOTE 1: that 4> will typically contain a sum of vectors, one of which will be a
multiple of j. We can ignore that multiple of i since the term e i would
appear elsewhere in a general solution to X / = AX.
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Analytical Solutions to Systems of First Order ODEs CASE 1: Solving 5 Ay D 1 G G E S

CASE 2: Solving nx n With complex eigenvalues
CASE 3: Solving X X, Apx n with repeated eigenvalues

REMINDER: Aii — A = 0 AND @i + > — Ay = 0.

< The first equation is, of course, equivalent to Au; = Auy so that g
is simply an eigenvector of A corresponding to eigenvalue A (so it
would already be known!!!).

< The second equation is equivalent to ‘ (A=) =w; ‘ and a

solution 15 is known as a generalised eigenvector of A.
< Returning to Equation (3), a solution to X ’ = AX is

x(t) = te*u; + e, where 0 is an eigenvector of A
corresponding to eigenvalue X\ and 3 is a GENERALISED
eigenvector of A corresponding to eigenvalue A. It can be shown

that this solution is linearly independent from %(t) = e*a3.

> NOTE 1: that 4> will typically contain a sum of vectors, one of which will be a
multiple of j. We can ignore that multiple of i since the term e i would
appear elsewhere in a general solution to X / = AX.

» NOTE 2: we have only discussed the case in which X is an eigenvalue of A of

multiplicity TWO. Other cases are “fairly easily” generalisable from this and will

be discussed briefly after the next example.
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CASE 1: Solving 3/ = / n with n different eigenvalues
CASE 2: Solving Anx n with complex eigenvalues
CASE 3: Solving X' = AX, A,y , with repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

“—» | EXAMPLE 14 (a) | (Based on EXAMPLE 10 of the Supplementary Lecture on Eigenvalues/

3.1
Eigenvectors): Find a general solution of X ' = AX where A= | 0 3
0 0

&~ O O
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igenvectors Using Matlab
» with n different eigenvalues

th complex eigenvalues

=A <0
= AX, A,x n with repeated eigenvalues

Finding Eigenvalues and
CASE 1: Solving X/ = A,
CASE 2: Solving X’

CASE 3: Solving X/

“—» | EXAMPLE 14 (a) | (Based on EXAMPLE 10 of the Supplementary Lecture on Eigenvalues/
3 1

Eigenvectors): Find a general solution of X ' = AX where A= | 0 3
0 0

Analytical Solutions to Systems of First Order ODEs

&~ O O

By solving det(A — AI) = (3 — \)2(4 — \) = 0, we get eigenvalues
A1 = 3 (multiplicity TWO) ‘ and [ o = 4]
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Analytical Solutions to Systems of First Order ODEs CASE 1: Solving %/ A T 1 GH TG G LS
CASE 2: Solving th complex eigenvalues

CASE 3: Solving X with repeated eigenvalues

“—» | EXAMPLE 14 (a) | (Based on EXAMPLE 10 of the Supplementary Lecture on Eigenvalues/
3 1

Eigenvectors): Find a general solution of X ' = AX where A= | 0 3
0 0

» Anxn

= A
! = A%,

&~ O O

By solving det(A — AI) = (3 — \)2(4 — \) = 0, we get eigenvalues

A1 = 3 (multiplicity TWO) ‘ and ‘ =4 ‘ We have already seen in the

Supplementary Lecture on Eigenvalues/Eigenvectors EXAMPLE 10 that there is only
one family of linearly independent eigenvectors corresponding to A\; = 3, of which

1
H=10 is a representative.
0
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CASE 1: Solving X’
CASE 2: Solving X
CASE 3: Solving X

th n different eloenvalues

“—» | EXAMPLE 14 (a) | (Based on EXAMPLE 10 of the Supplementary Lecture on Eigenvalues/

3.1
Eigenvectors): Find a general solution of X ' = AX where A= | 0 3
0 0

&~ O O

By solving det(A — AI) = (3 — \)2(4 — \) = 0, we get eigenvalues

’ A1 = 3 (multiplicity TWO) ‘ and ‘ =4 ‘ We have already seen in the

Supplementary Lecture on Eigenvalues/Eigenvectors EXAMPLE 10 that there is only

one family of linearly independent eigenvectors corresponding to A\; = 3, of which
1
=0
0

solution of the form X(t)

is a representative. So we seek a generalised eigenvector by assuming a
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CASE 1: Solving X’
CASE 2: Solving X
CASE 3: Solving X

th n different eloenvalues

“—» | EXAMPLE 14 (a) | (Based on EXAMPLE 10 of the Supplementary Lecture on Eigenvalues/

3.1
Eigenvectors): Find a general solution of X ' = AX where A= | 0 3
0 0

&~ O O

By solving det(A — AI) = (3 — \)2(4 — \) = 0, we get eigenvalues

’ A1 = 3 (multiplicity TWO) ‘ and ‘ =4 ‘ We have already seen in the

Supplementary Lecture on Eigenvalues/Eigenvectors EXAMPLE 10 that there is only
one family of linearly independent eigenvectors corresponding to A\; = 3, of which
1
=0
0

is a representative. So we seek a generalised eigenvector by assuming a

solution of the form X(t) = te3tuj + €3
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CASE 1: Solving X’
CASE 2: Solving X
CASE 3: Solving X

th n different eloenvalues

“—» | EXAMPLE 14 (a) | (Based on EXAMPLE 10 of the Supplementary Lecture on Eigenvalues/

3.1
Eigenvectors): Find a general solution of X ' = AX where A= | 0 3
0 0

&~ O O

By solving det(A — AI) = (3 — \)2(4 — \) = 0, we get eigenvalues
’ A1 = 3 (multiplicity TWO) ‘ and ‘ =4 ‘ We have already seen in the

Supplementary Lecture on Eigenvalues/Eigenvectors EXAMPLE 10 that there is only

one family of linearly independent eigenvectors corresponding to A\; = 3, of which
1

g =| o | is a representative. So we seek a generalised eigenvector by assuming a
0

solution of the form X(t) = te3*ui + e3> and, upon substitution into ¥ / = AX
solving the resulting new equation
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CASE 1: Solving X’
CASE 2: Solving X
CASE 3: Solving X

th n different eloenvalues

“—» | EXAMPLE 14 (a) | (Based on EXAMPLE 10 of the Supplementary Lecture on Eigenvalues/

3.1
Eigenvectors): Find a general solution of X ' = AX where A= | 0 3
0 0
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By solving det(A — AI) = (3 — \)2(4 — \) = 0, we get eigenvalues
’ A1 = 3 (multiplicity TWO) ‘ and ‘ =4 ‘ We have already seen in the

Supplementary Lecture on Eigenvalues/Eigenvectors EXAMPLE 10 that there is only

one family of linearly independent eigenvectors corresponding to A\; = 3, of which
1

g =| o | is a representative. So we seek a generalised eigenvector by assuming a
0

solution of the form X(t) = te3*ui + e3> and, upon substitution into ¥ / = AX
solving the resulting new equation

(A-3)ip=id =

44 /131



Analytical Solutions to Systems of First Order ODEs Finding E|genvalues and Eigenvectors Using Matlab

CASE 1: Solving X’
CASE 2: Solving X
CASE 3: Solving X

th n different eloenvalues

“—» | EXAMPLE 14 (a) | (Based on EXAMPLE 10 of the Supplementary Lecture on Eigenvalues/

3.1
Eigenvectors): Find a general solution of X ' = AX where A= | 0 3
0 0

&~ O O

By solving det(A — AI) = (3 — \)2(4 — \) = 0, we get eigenvalues
’ A1 = 3 (multiplicity TWO) ‘ and ‘ =4 ‘ We have already seen in the

Supplementary Lecture on Eigenvalues/Eigenvectors EXAMPLE 10 that there is only

one family of linearly independent eigenvectors corresponding to A\; = 3, of which
1

g =| o | is a representative. So we seek a generalised eigenvector by assuming a
0

solution of the form X(t) = te3*ui + e3> and, upon substitution into ¥ / = AX
solving the resulting new equation

0 1 0 1 1
(A=3ha =a; = 0 0 0 w | =1 o
0 0 1 3 0
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Analytical Solutions to Systems of First Order ODEs CASE 1: Solving %/ A

« n with n different eigenvalues
CASE 2: Solving =A « n With complex eigenvalues
CASE 3: Solving X' = AX, A,y , with repeated eigenvalues

“—» | EXAMPLE 14 (a) | (Based on EXAMPLE 10 of the Supplementary Lecture on Eigenvalues/
3 1
Eigenvectors): Find a general solution of X ' = AX where A= | 0 3
0 0

&~ O O

By solving det(A — AI) = (3 — \)2(4 — \) = 0, we get eigenvalues
’ A1 = 3 (multiplicity TWO) ‘ and ‘ =4 ‘ We have already seen in the
Supplementary Lecture on Eigenvalues/Eigenvectors EXAMPLE 10 that there is only

one family of linearly independent eigenvectors corresponding to A\; = 3, of which
1
g =| o | is a representative. So we seek a generalised eigenvector by assuming a
0
solution of the form X(t) = te3*ui + e3> and, upon substitution into ¥ / = AX
solving the resulting new equation

0 1 0 1 1
(A=3ha =a; = 0 0 0 w | =1 o
0 0 1 3 0

So up3 = 0, upp = 1, and wpy can take on any (non-zero) value, so that a typical generalised eigenvector is of the

1 0
form upy 0 + 1
0 0
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Analytical Solutions to Systems of First Order ODEs CASE 1: Solving %/ A

« n with n different eigenvalues
CASE 2: Solving =A « n With complex eigenvalues
CASE 3: Solving X' = AX, A,y , with repeated eigenvalues

“—» | EXAMPLE 14 (a) | (Based on EXAMPLE 10 of the Supplementary Lecture on Eigenvalues/
3 1
Eigenvectors): Find a general solution of X ' = AX where A= | 0 3
0 0

&~ O O

By solving det(A — AI) = (3 — \)2(4 — \) = 0, we get eigenvalues
’ A1 = 3 (multiplicity TWO) ‘ and ‘ =4 ‘ We have already seen in the
Supplementary Lecture on Eigenvalues/Eigenvectors EXAMPLE 10 that there is only

one family of linearly independent eigenvectors corresponding to A\; = 3, of which
1
g =| o | is a representative. So we seek a generalised eigenvector by assuming a
0
solution of the form X(t) = te3*ui + e3> and, upon substitution into ¥ / = AX
solving the resulting new equation

0 1 0 1 1
(A=3ha =a; = 0 0 0 w | =1 o
0 0 1 3 0

So up3 = 0, upp = 1, and wpy can take on any (non-zero) value, so that a typical generalised eigenvector is of the

1 0
form upy 0 + 1 . Hence, setting up; = 1, a generalised eigenvector is
0 0
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Analytical Solutions to Systems of First Order ODEs CASE 1: Solving %/ A

« n with n different eigenvalues
CASE 2: Solving =A « n With complex eigenvalues
CASE 3: Solving X' = AX, A,y , with repeated eigenvalues

“—» | EXAMPLE 14 (a) | (Based on EXAMPLE 10 of the Supplementary Lecture on Eigenvalues/
3 1
Eigenvectors): Find a general solution of X ' = AX where A= | 0 3
0 0

&~ O O

By solving det(A — AI) = (3 — \)2(4 — \) = 0, we get eigenvalues
’ A1 = 3 (multiplicity TWO) ‘ and ‘ =4 ‘ We have already seen in the
Supplementary Lecture on Eigenvalues/Eigenvectors EXAMPLE 10 that there is only

one family of linearly independent eigenvectors corresponding to A\; = 3, of which
1
g =| o | is a representative. So we seek a generalised eigenvector by assuming a
0
solution of the form X(t) = te3*ui + e3> and, upon substitution into ¥ / = AX
solving the resulting new equation

0 1 0 1 1
(A=3ha =a; = 0 0 0 w | =1 o
0 0 1 3 0

So up3 = 0, upp = 1, and wpy can take on any (non-zero) value, so that a typical generalised eigenvector is of the

1 0 1 0
form upy 0 + 1 . Hence, setting up; = 1, a generalised eigenvector is 0 + 1
0 0 0 0
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. . - Finding Eigenvalues and Eigenvectors Using Matlab
Analytical Solutions to Systems of First Order ODEs GASENISolvine d= AR B fTerenteicenvalies

CASE 2: Solving =A « n With complex eigenvalues
CASE 3: Solving X' = AX, A,y , with repeated eigenvalues

1 0
REMINDER: Generalised eigenvector : 0 + 1
0 0

— Because the first vector in this sum is simply the eigenvector uj, we ignore it
0
and take the generalised eigenvector to be simply | 1
0
> ASIDE: Alternatively, we could have simply taken u»; = 0 and gotten the
0

generalised eigenvector, 1 |, directly.
0
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CASE 2: Solving =A « n With complex eigenvalues
CASE 3: Solving X' = AX, A,y , with repeated eigenvalues

1 0
REMINDER: Generalised eigenvector : 0 + 1
0 0

— Because the first vector in this sum is simply the eigenvector uj, we ignore it
and take the generalised eigenvector to be simply | 1
0
> ASIDE: Alternatively, we could have simply taken u»; = 0 and gotten the

generalised eigenvector, 1 |, directly.
0

~ So from Equation (3) a solution to X’ = AX is
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Analytical Solutions to Systems of First Order ODEs GASENISolvine d= AR B fTerenteicenvalies

CASE 2: Solving =A « n With complex eigenvalues
CASE 3: Solving X' = AX, A,y , with repeated eigenvalues

—
+
= o

REMINDER: Generalised eigenvector :

o o
o

— Because the first vector in this sum is simply the eigenvector uj, we ignore it
and take the generalised eigenvector to be simply | 1
0
> ASIDE: Alternatively, we could have simply taken u»; = 0 and gotten the

0
generalised eigenvector, 1 |, directly.
0

= O

~ So from Equation (3) a solution to ¥/ = AX is X(t) = te! + e

o o
o

Next to find an eigenvector corresponding to single eigenvalue A = 4 we solve
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Analytical Solutions to Systems of First Order ODEs GASENISolvine d= AR B fTerenteicenvalies

CASE 2: Solving =A « n With complex eigenvalues
CASE 3: Solving X' = AX, A,y , with repeated eigenvalues

1 0
REMINDER: Generalised eigenvector : 0 + 1
0 0

— Because the first vector in this sum is simply the eigenvector uj, we ignore it
and take the generalised eigenvector to be simply | 1
0
> ASIDE: Alternatively, we could have simply taken u»; = 0 and gotten the

generalised eigenvector, 1 |, directly.
0

= O

1
~ So from Equation (3) a solution to ¥/ = AX is X(t) = te3f | 0 | + &3¢
0 0

Next to find an eigenvector corresponding to single eigenvalue A = 4 we solve

-1 1 0 vi 0 0
0o -1 o0 2 = 0 =...=> V= 0
0 0 0 v3 0 1

is an eigenvector corresponding to eigenvalue Ay = 4.
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Analytical Solutions to Systems of First Order ODEs CASE 1:/Solving X/

= A, % n with n different eigenvalues
CASE 2: Solving =A « n With complex eigenvalues
CASE 3: Solving X' = AX, A,y , with repeated eigenvalues

1 0
REMINDER: Generalised eigenvector : 0 + 1
0 0

— Because the first vector in this sum is simply the eigenvector uj, we ignore it
0
and take the generalised eigenvector to be simply | 1
0
> ASIDE: Alternatively, we could have simply taken u»; = 0 and gotten the

0
generalised eigenvector, 1 |, directly.
0

= O

1
~ So from Equation (3) a solution to ¥/ = AX is X(t) = te3f | 0 | + &3¢
0 0

Next to find an eigenvector corresponding to single eigenvalue A = 4 we solve

-1 1 0 vi 0 0
0o -1 o0 2 = 0 =...=> V= 0
0 0 0 v3 0 1

is an eigenvector corresponding to eigenvalue Ay = 4. So a general solution to X / = AX is
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. . - Finding Elgenvalues and Eigenvectors Using Matlab
Analytical Solutions to Systems of First Order ODEs CASE 1: Solving %/

th n different eloenvalues
CASE 2: Solvmﬂ

1 0
REMINDER: Generalised eigenvector : 0 + 1
0 0

— Because the first vector in this sum is simply the eigenvector uj, we ignore it
0
and take the generalised eigenvector to be simply | 1
0
> ASIDE: Alternatively, we could have simply taken u»; = 0 and gotten the

0
generalised eigenvector, 1 |, directly.
0

1 0
~ So from Equation (3) a solution to ¥/ = AXis X(t) = te3* | 0 | +&% | 1
0 0
Next to find an eigenvector corresponding to single eigenvalue A = 4 we solve
-1 10 v 0 0
0 -1 0 w =10 =...=> v=]0
0 0 o v 0 1

is an eigenvector corresponding to eigenvalue Ay = 4. So a general solution to X / = AX is

0 1 1 0
Rt)=Be* | 0 | +B® | 0 | +Bs(te¥| 0 [+ 1
1 0 0 0
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Analytical Solutions to Systems of First Order ODEs CASE 1:4Solving X 4 =/ B hidiTerenteizenvalues

CASE 2: Solving Anx n with complex eigenvalues
CASE 3: Solving X' = AX, A,y , with repeated
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Finding Eigenvalues and Eigenvectors Using Matlab

CASE 1: Solving 3/ = / n with n different eigenvalues
CASE 2: Solving Anx n with complex eigenvalues
CASE 3: Solving X' = AX, A,y , with repeated

< | EXAMPLE 14 (b) |: Find a general solution of X / = AX where A = [ i 71 } .

We first find the eigenvalues of A by solving det(A — Al) =0, so

Analytical Solutions to Systems of First Order ODEs
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igenvectors Using Matlab
» with n different eigenvalues

th complex eigenvalues

=A <0
= AX, A,x n with repeated eigenvalues

Finding Eigenvalues and
CASE 1: Solving X/ = A,
CASE 2: Solving X’

CASE 3: Solving X/

< | EXAMPLE 14 (b) |: Find a general solution of X / = AX where A = [

We first find the eigenvalues of A by solving det(A — Al) =0, so
B-N1-N+1=0=X-22+4=0= (A—2)?> =0, so that

Analytical Solutions to Systems of First Order ODEs

(repeated) eigenvalue.
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Finding Eigenvalues and Eigenvectors Using Matlab
CASE 1: Solving X’ Apx th n different eigenvalues
Ap x n with complex eigenvalues

Analytical Solutions to Systems of First Order ODEs

CASE 2: Solving X' = A .
CASE 3: Solving X' = AX, A,y , with repeated eigenvalues

< | EXAMPLE 14 (b) |: Find a general solution of X / = AX where A = [ i 71 } .

We first find the eigenvalues of A by solving det(A — Al) =0, so

B-NI-N+1=0=X-2A+4=0= (A—2)> =0, so that [\ = 2] is the
(repeated) eigenvalue.
To find one or more corresponding linearly independent eigenvectors, solve

. = [1 -1 xx\_ (0 _ 1
(A—2I)><70.[1 _1}<X2>7<0):>x17><250(1)0rany

(non-zero) scalar multiple thereof is the only (family of) linearly independent
eigenvector(s) associated directly with the eigenvalue A = 2.
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Finding Eigenvalues and Eigenvectors Using Matlab

CASE 1: Solving ¥/ = AX, A, , with n different eigenvalues
CASE 2: Solv ! nx n With complex eigenvalues
CASE 3: Solving X X, Apx n With repeated eigenvalues

< | EXAMPLE 14 (b) |: Find a general solution of X / = AX where A = [ i 71 } .

We first find the eigenvalues of A by solving det(A — Al) =0, so
B-NI-N+1=0=X-2A+4=0= (A—2)> =0, so that [\ = 2] is the
(repeated) eigenvalue.

To find one or more corresponding linearly independent eigenvectors, solve

. = [1 -1 xx\_ (0 _ 1
(A—2I)><70.[1 _1}<X2>7<0):>x17><250(1)0rany

(non-zero) scalar multiple thereof is the only (family of) linearly independent
eigenvector(s) associated directly with the eigenvalue A = 2.
We therefore need to find a generalised eigenvector by solving

1 -1 v \_ [ 1 _ _
|:1 _1i|(u2)7(1)=>u1—uz710ru171+uz.

So any vector of the form ( Z; >:< 1JE2U2 ):( (1) )—l—uz( 1 ) is a

generalised eigenvector of A. Specifically, since the second vector already appears in

Analytical Solutions to Systems of First Order ODEs

. . . . 1 .
the linear span of the first eigenvector, we take just ( ) as the generalised

0
eigenvector (i.e, we set u» = 0).
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CASE 1: Solving / Ap x n with n different eigenvalues
CASE 2: Solving Anx n with complex eigenvalues
CASE 3: Solving X , Apx n With repeated eigenvalues

< | EXAMPLE 14 (b) |: Find a general solution of X / = AX where A = [ i 71 } .

We first find the eigenvalues of A by solving det(A — Al) =0, so
B-NI-N+1=0=X-2A+4=0= (A—2)> =0, so that [\ = 2] is the
(repeated) eigenvalue.

To find one or more corresponding linearly independent eigenvectors, solve

. = [1 -1 xx\_ (0 _ 1
(A—2I)><70.[1 _1}<X2>7<0):>x17><250(1)0rany

(non-zero) scalar multiple thereof is the only (family of) linearly independent
eigenvector(s) associated directly with the eigenvalue A = 2.
We therefore need to find a generalised eigenvector by solving

1 -1 v \_ [ 1 _ _
|:1 _1i|(u2)7(1)=>u1—uz710ru171+uz.

So any vector of the form ( Z; >:< 1JE2U2 ):( (1) )—l—uz( 1 ) is a

generalised eigenvector of A. Specifically, since the second vector already appears in

Analytical Solutions to Systems of First Order ODEs

0
eigenvector (i.e, we set u» = 0). And the general solution to the system of ODEs is

(%) =a (1) rae (o) (1)

. . . . 1 .
the linear span of the first eigenvector, we take just ( ) as the generalised
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Finding Eigenvalues and Eigenvectors Using Matlab

CASE 1: Solving 3/ = / n with n different eigenvalues
CASE 2: Solving Anx n with complex eigenvalues
CASE 3: Solving X' = AX, A,y , with repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

» The techniques described generalise in a fairly easy way to situations in which
the multiplicity of the eigenvalue is greater than 2.
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. . - Finding E|oenvalues and Eigenvectors Using Matlab
Analytical Solutions to Systems of First Order ODEs CASE 1: Solving %/ A

« n with n different eigenvalues
CASE 2: Solving =A « n With complex eigenvalues
CASE 3: Solving X' = AX, A,y , with repeated eigenvalues

>

>

The techniques described generalise in a fairly easy way to situations in which
the multiplicity of the eigenvalue is greater than 2.

For example if A has an eigenvalue A of multiplicity THREE with only TWO
linearly independent eigenvectors vi and v3 corresponding to that eigenvalue,
then an analysis similar to the one used to come up with Equation (3) would
again lead to the conclusion that a sqution of the form

R(t) = teMV 4+ eMi=> (A—A)V =0 and (A—A)id=7.
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Finding E|genvalues and Eigenvectors Using Matlab

CASE 1: Solving 3/ = / Ap, « n with n different eloenvalues
CASE 2: Solving X

CASE 3: Solving X

Analytical Solutions to Systems of First Order ODEs

» The techniques described generalise in a fairly easy way to situations in which
the multiplicity of the eigenvalue is greater than 2.

» For example if A has an eigenvalue A of multiplicity THREE with only TWO
linearly independent eigenvectors vi and v3 corresponding to that eigenvalue,
then an analysis similar to the one used to come up with Equation (3) would
again lead to the conclusion that a sqution of the form
R(t) = teMv + eMi = (A— AV = 0 and (A )\I)u = V. NOTING that the
most general solution to the first equation is V = c1vi + c2v_§, it will often be
necessary to assign specific values to ¢; and ¢; to ensure that (A — A)d =V
has a solution, 4.
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CASE 1: Solving X

= Anx th n different eigenvalues
CASE 2: Solving X/ = AX, , with complex eigenvalues
CASE 3: Solving X' = AX, A,,><,7 with repeated eigenvalues

» The techniques described generalise in a fairly easy way to situations in which
the multiplicity of the eigenvalue is greater than 2.

» For example if A has an eigenvalue A of multiplicity THREE with only TWO
linearly independent eigenvectors vi and v3 corresponding to that eigenvalue,
then an analysis similar to the one used to come up with Equation (3) would
again lead to the conclusion that a sqution of the form
R(t) = teMv + eMi = (A— AV = 0 and (A )\I)u = V. NOTING that the
most general solution to the first equation is V = c1vi + c2v_§, it will often be
necessary to assign specific values to ¢; and ¢; to ensure that (A — A)d =V
has a solution, 4.

> Likewise, if A has an eigenvalue of multiplicity 3 but only one linearly
independent corresponding eigenvector ¥, then assume X(t) = te*u; + et
and follow the analysis leading up to Equation (3).
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Finding Eigenvalues and Eigenvectors Using Matlab
CASE 1: Solving X/ = Ap x n with n different eigenvalues
Anx n with complex eigenvalues

Analytical Solutions to Systems of First Order ODEs

CASE 2: Solving X' = A
CASE 3: Solving X' = AX, A,y , with repeated eigenvalues

» The techniques described generalise in a fairly easy way to situations in which
the multiplicity of the eigenvalue is greater than 2.

» For example if A has an eigenvalue A of multiplicity THREE with only TWO
linearly independent eigenvectors vi and v3 corresponding to that eigenvalue,
then an analysis similar to the one used to come up with Equation (3) would
again lead to the conclusion that a solution of the form
R(t) = teMv + eMi = (A— AV = 0 and (A= AI)d = V. NOTING that the
most general solution to the first equation is V = c1vi + 3, it will often be
necessary to assign specific values to ¢; and ¢; to ensure that (A — A)d =V
has a solution, 4.

> Likewise, if A has an eigenvalue of multiplicity 3 but only one linearly
independent corresponding eigenvector ¥, then assume X(t) = te* i 4 eMup
and follow the analysis leading up to Equation (3). THEN to get a third linearly
independent solution, assume X(t) = Lt2eMp + te*wh + ek and repeat
the analysis leading up to Equation (3) to conclude

(A= X)W =0, (A= AW, =wy, and |(A— X)Wz = @, |
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CASE 2: Solving X' = A
CASE 3: Solving X' = AX, A,y , with repeated eigenvalues

» The techniques described generalise in a fairly easy way to situations in which
the multiplicity of the eigenvalue is greater than 2.

» For example if A has an eigenvalue A of multiplicity THREE with only TWO
linearly independent eigenvectors vi and v3 corresponding to that eigenvalue,
then an analysis similar to the one used to come up with Equation (3) would
again lead to the conclusion that a solution of the form
R(t) = teMv + eMi = (A— AV = 0 and (A= AI)d = V. NOTING that the
most general solution to the first equation is V = c1vi + 3, it will often be
necessary to assign specific values to ¢; and ¢; to ensure that (A — A)d =V
has a solution, 4.

> Likewise, if A has an eigenvalue of multiplicity 3 but only one linearly
independent corresponding eigenvector ¥, then assume X(t) = te* i 4 eMup
and follow the analysis leading up to Equation (3). THEN to get a third linearly
independent solution, assume X(t) = Lt2eMp + te*wh + ek and repeat
the analysis leading up to Equation (3) to conclude

(A= X)W =0, (A= AW, =wy, and |(A— X)Wz = @, |

» SEE a standard introductory ODE book, such as the one by Boyce and
DiPrima, for more on this topic.
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CASE 2: Solving nx n With complex eigenvalues
CASE 3: Solving X X, Apx n with repeated eigenvalues
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’ Inhomogeneous Systems X ' = AX + g(t), Anxn

< There are several techniques for solving inhomogeneous
systems, two of which are discussed in APPENDIX B.

48 /131



Finding Eigenvalues and Eigenvectors Using Matlab

CASE 1: Solving « n With n different eigenvalues
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’ Inhomogeneous Systems X ' = AX + g(t), Anxn

< There are several techniques for solving inhomogeneous
systems, two of which are discussed in APPENDIX B.

< This is material is interesting but is not absolutely
necessary for what we will be doing here which is
classifying the behaviour of solutions to systems of ODEs;
for that, it is enough to consider the solution of
homogeneous linear (constant matrix coefficient) systems
of the form 42
X _ AR Ann.

= =
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CASE 1: Solving « n With n different eigenvalues
CASE 2: Solvir / Anx n with complex eigenvalues
CASE 3: Solving X, Apx n with repeated eigenvalues

Analytical Solutions to Systems of First Order ODEs

’ Inhomogeneous Systems X ' = AX + g(t), Anxn

< There are several techniques for solving inhomogeneous
systems, two of which are discussed in APPENDIX B.

< This is material is interesting but is not absolutely
necessary for what we will be doing here which is
classifying the behaviour of solutions to systems of ODEs;
for that, it is enough to consider the solution of
homogeneous linear (constant matrix coefficient) systems
of the form 42

X el
E - AXv Anxn.
“—> Note examples are numbered in Appendix B and the rest of this document as if

Appendix B were inserted here.
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Analytical Solutions to Systems of First Order ODEs GASELISolving X4 =VAx ARSI it hin different cigenvaliies

CASE 2: Solving X’ Anx n with complex eigenvalues
CASE 3: Solving X' = AX, A,y , with repeated eigenvalues

End of Section

49 /131



Euler’'s Method for Systems of First Order ODEs

Other Numerical Methods for Systems of First Order ODEs
Heun’s Method

4th Order Runge-Kutta (RK4)
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Numerical Methods for Systems of First Order ODEs

Notation and Conventions

< As always, NOTATION is going to be very important in what
follows. PAY CLOSE ATTENTION TO IT!
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< As always, NOTATION is going to be very important in what
follows. PAY CLOSE ATTENTION TO IT!

< The use of vector notation and vector functions and
transformations will make very easy the transition from studying
and approximating the solution to a single first order ODE (and
IVP) to studying and approximating the solution to a system of first
order ODEs (and IVPs).
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Numerical Methods for Systems of First Order ODEs

Notation and Conventions

< As always, NOTATION is going to be very important in what
follows. PAY CLOSE ATTENTION TO IT!

< The use of vector notation and vector functions and
transformations will make very easy the transition from studying
and approximating the solution to a single first order ODE (and
IVP) to studying and approximating the solution to a system of first
order ODEs (and IVPs).

< In what follows, vectors will be denoted by boldface, e.g. v, or by
a vector symbol 7, such as V.

> Assume all vectors are column vectors unless otherwise stated.

> A function whose output is a vector will follow the above

convention of having its name in boldface or with a vector symbol:
2 _ t2y [ +2t-1
eg f(t,y) = [ sin(t + 2y) ] or g(t) = [ sin(t)e”* }
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— We differentiate (or integrate) vector functions by differentiating (or
integrating) each term individually:
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3 _
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F(t) = sin t = 7/(t) or — or ¥(t) =
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integrating) each term individually:

3 — 4t a7 3t2 -4
= . -/ r .
F(t) = sin t = 7/(t) or — or ¥(t) = cost
e2t dt 2g2t

< It is often convenient to name the component functions of a vector
function or transformation with the same name as the vector
function or transformation, but with subscripts to indicate their
position in the vector.
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— We differentiate (or integrate) vector functions by differentiating (or
integrating) each term individually:

3 — 4t a7 3t2 -4
= . -/ r .
F(t) = sin t = 7/(t) or — or ¥(t) = cost
e2t dt 2g2t

< It is often convenient to name the component functions of a vector
function or transformation with the same name as the vector
function or transformation, but with subscripts to indicate their
position in the vector. For example

yl(t) ﬂ(t7YI7Y27Y3)
y(t) = yQ(t) or f(t7Y1aY2>Y3) - f2(t7}/17}/27}/3)
y3(t) @(t,}/17}/27}/3)
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— We differentiate (or integrate) vector functions by differentiating (or
integrating) each term individually:

3 — 4t a7 3t2 -4
= . -/ r .
F(t) = sin t = 7/(t) or — or ¥(t) = cost
e2t dt 2g2t

< It is often convenient to name the component functions of a vector
function or transformation with the same name as the vector
function or transformation, but with subscripts to indicate their
position in the vector. For example

yl(t) ﬂ(t7YI7Y27Y3)
y(t) = yQ(t) or f(t7Y1aY2>Y3) - f2(t7}/17}/27}/3)
y3(t) @(t,}/17}/27}/3)

This convention will be useful to adopt when we write general
programs (Euler’s, Heun's, RK(4), etc.) to solve systems of n first
order ODEs.
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< In light of the notation/conventions just established, a system of
IVPs such as

dy1
I = fl(t7ylay21y3)
dy;
W = fz(t,Y17Y27Y3)
dys
? = f3(t7y17y25y3)

with t € [to, T] and yl(t()) = ¥1,0, yz(t()) = y2,0, and
y3(to) = y3,0, can be written in vector form as

52/131



Euler’'s Method for Systems of First Order ODEs

Other Numerical Methods for Systems of First Order ODEs
Heun’s Method

4th Order Runge-Kutta (RK4)

Numerical Methods for Systems of First Order ODEs

< In light of the notation/conventions just established, a system of

IVPs such as dyn he )
dt (L, Y1, Y2, Y3
dy;

W = fz(t,Y17Y27Y3)
dys
? = f3(t7y17y25y3)

with t € [to, T] and yl(t()) = ¥1,0, yz(t()) = y2,0, and
y3(to) = y3,0, can be written in vector form as

dy .

= oy or 7)) = f(£9) or f(t,y1,y2,53)
Y10
with t € [to, T] and ¥(t) = ¥o = Y20 |,
Y30
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< In light of the notation/conventions just established, a system of

IVPs such as dyn he )
dt (L, Y1, Y2, Y3
dy;

W = fz(t,Y17Y27Y3)
dys
? = f3(t7y17y25y3)

with t € [to, T] and yl(t()) = ¥1,0, yz(t()) = y2,0, and
y3(to) = y3,0, can be written in vector form as

d - -
Ty ory () = F(ty) or Fltyy )
y1,0
with t € [to, T] and ¥(t) = Yo = | y2,0 |. where
¥3,0
yl(t) o fl(tyylvyZ’y3)
y(t)y=|{ y(t) and f(t,y) = | f(t,y1,y2,y3)
y3(t) f3(t,yl,,V2,,V3)
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General First Order System of n IVPs

< In discussing numerical methods for systems of ODEs, we will focus on the
general first order system of n IVPs:

— Find y(t) such that <

dy

=f(t,y), Vte[t,T
o (t,¥), [to, T]

where ¥(tg) = ¥p is a given initial value of the unknown vector function, y(t),

and F(t,y) = F(t, ¥(t)) is a given vector transformation.
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General First Order System of n IVPs

< In discussing numerical methods for systems of ODEs, we will focus on the

general first order system of n IVPs:

— Find y(t) such that <

dy o
& _ft,y), Vtelt,T]

dt

where ¥(tg) = ¥p is a given initial value of the unknown vector function, y(t),

and F(t,y) = F(t, ¥(t)) is a given vector transformation.

yi(t) yi(to) f(t,y1,y2, -, ¥n)

y2(t) y2(to) = . f(t, y1,¥2, - -, ¥n)
Here y(t) = , Vo= . , and f(t,y) = f(t,y1,¥2,--.,yn) = .

yn(t) yn(to) fo(tyy1, ¥2, -+, ¥n)
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General First Order System of n IVPs

< In discussing numerical methods for systems of ODEs, we will focus on the

general first order system of n IVPs:

— Find y(t) such that <

dy o
& _ft,y), Vtelt,T]

dt

and F(t,y) = F(t, ¥(t)) is a given vector transformation.

where ¥(tg) = ¥p is a given initial value of the unknown vector function, y(t),

yi(t) yi(to) f(t,y1,y2, -, ¥n)

y2(t) y2(to) = . f(t y1,¥2, -+ - ¥n)
Here y(t) = . , Vo= . , and f(t,y) = f(t,y1,¥2,--.,yn) = .

yn(t) yn(to) fo(tyy1, ¥2, -+, ¥n)

» NOTE the similarity to the single first order IVP.

53 /131



Euler’'s Method for Systems of First Order ODEs
Other Numerical Methods for Systems of First Order ODEs

Numerical Methods for Systems of First Order ODEs g
Heun’s Method
4th Order Runge-Kutta (RK4)

General First Order System of n IVPs

< In discussing numerical methods for systems of ODEs, we will focus on the

general first order system of n IVPs:

— Find y(t) such that <

dy o
& _ft,y), Vtelt,T]

dt

and F(t,y) = F(t, ¥(t)) is a given vector transformation.

where ¥(tg) = ¥p is a given initial value of the unknown vector function, y(t),

yi(t) yi(to) f(t,y1,y2, -, ¥n)
ya(t) y2(to) = . fo(t, y1,¥2, - ¥n)
Here y(t) = : , Vo= : , and f(t,Y)=f(t,y1,y2,- .-, ¥n) = .
,Vn.(t) }/n(.t()) fn(t, y1, yé, <5 Yn)
» NOTE the similarity to the single first order IVP.
> Often, ty will be 0, and we will focus on the n =2 and n =-3 cases.
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General First Order System of n IVPs - Autonomous Systems

< Since many of the systems we look at will also be autonomous, here is the
general first order system of n IVPs for that special case:

— Find y(t) such that «

dy

o f(y), Vtelt,T]

where ¥(tg) = o is a given initial value of the unknown vector function, y(t),

and F(¥) = F(¥(t)) is a given vector transformation.
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General First Order System of n IVPs - Autonomous Systems

< Since many of the systems we look at will also be autonomous, here is the
general first order system of n IVPs for that special case:

— Find y(t) such that «
dy

— =f(y), Vtelt, T
L _f7), Viteln,T]

where ¥(tg) = o is a given initial value of the unknown vector function, y(t),

and F(¥) = F(¥(t)) is a given vector transformation.

y(t) y1(to) f(y1sy2, -+ ¥n)
2 (t) y2(to) . . fa(y1s ¥2, -+ ¥n)

Here y(t) = . s Vo= . , and f(¥)=f(y1,y2,--,¥n) =
yn(t) yn(to) fa(y1s y2, -+ ¥n)
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General First Order System of n IVPs - Autonomous Systems

< Since many of the systems we look at will also be autonomous, here is the
general first order system of n IVPs for that special case:

— Find y(t) such that «
dy
— =f(y), Vtelt, T

Y _15), Vel T]

where ¥(tg) = o is a given initial value of the unknown vector function, y(t),

and F(¥) = F(¥(t)) is a given vector transformation.

y(t) y1(to) f(y1sy2, -+ ¥n)

ya(t) y2(to) . . fa(y1s ¥2, -+ ¥n)
Here y(t) = . s Vo= . , and f(¥)=f(y1,y2,--,¥n) =

yn(t) yn(to) fa(y1s y2, -+ ¥n)

» NOTE the similarity to the single first order autonomous IVP BUT also NOTE

that as for single ODEs we will solve these systems using programs written for
the general case on the preceding slide.
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Euler’s Method for Systems of First Order ODEs
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The main reason why we made such a fuss about expressing
all of our IVPs in vector form is that the equations for the

different approximation methods (giving the formula for
Yi+1) remain the same, with
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e operations like +, — BECOMING vector +, vector —
where appropriate,
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The main reason why we made such a fuss about expressing
all of our IVPs in vector form is that the equations for the
different approximation methods (giving the formula for
Yi+1) remain the same, with

e operations like +, — BECOMING vector +, vector —
where appropriate,

e multiplication by h BECOMING scalar multiplication by
h.
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Euler’s Method for Systems of First Order ODEs

The main reason why we made such a fuss about expressing
all of our IVPs in vector form is that the equations for the
different approximation methods (giving the formula for
Yi+1) remain the same, with

e operations like +, — BECOMING vector +, vector —
where appropriate,

e multiplication by h BECOMING scalar multiplication by
h.

| will show next why this is true for Euler's method by deriving
the method for the special case of 2 ODEs, using Taylor series
of the two solution functions, similar to what we did in

Lecture 2 when deriving Euler’s method for single ODEs.
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» Suppose we want to use Euler's method to approximate the solutions to

dy1

. = fi t1, y1,

o 1(t1, y1,y2)
dy>

e = f t7 ) )
" 2(t1, y1, ¥2)

t € [to, T], yi(to) =y1,0, y2(to) = y2,0-
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» Suppose we want to use Euler's method to approximate the solutions to

dy1

— = fA(t,n,

o 1(t1, y1,y2)

dy>

Pl f(t,y1,y2), t€[to, T], yi(to) = y10, y2(to) = y2,0-

» Then, using Taylor series,
yi(tiv1) = ya(ti + h)
y2(tiv1) = ya(ti + h)

v1(ti) + hyi(t:) + O(K?)
ya(ti) + hys(t:) + O(K?)

Q

yi(ti) + hfa(ti, ya(ti), ya(ti))
ya(ti) + hha(ti, ya (i), ya(ti)

Q
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» Suppose we want to use Euler's method to approximate the solutions to

dy1

— = fA(t,n,

o 1(t1, y1,y2)

dy>

Pl f(t,y1,y2), t€[to, T], yi(to) = y10, y2(to) = y2,0-

» Then, using Taylor series,

yi(tiv1) = yi(ti + h)
ya(tiy1) = yo(ti + h)

v1(ti) + hyi(t:) + O(K?)
ya(ti) + hys(t:) + O(K?)

Q

yi(ti) + hfa(ti, ya(ti), ya(ti))
ya(ti) + hha(ti, ya (i), ya(ti)

If we replace the functions by their approximations, we get the systems version
of Euler’s method (using SUPERSCRIPTS to indicate the timestep (iteration)
number and SUBSCRIPTS to indicate the function number):

Q
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» Suppose we want to use Euler's method to approximate the solutions to

dy1

— = fA(t,n,

o 1(t1, y1,y2)

dy>

Pl f(t,y1,y2), t€[to, T], yi(to) = y10, y2(to) = y2,0-

» Then, using Taylor series,

tip) =yi(ti+h) = yi(t) + hyi(t;) + O(h?)
ya(tiv1) = yo(t; + h) ya(ti) + hyb(t:) + O(h?)

Q

yi(ti) + hfa(ti, ya(ti), ya(ti))
ya(ti) + hha(ti, ya (i), ya(ti)

Q

If we replace the functions by their approximations, we get the systems version
of Euler’s method (using SUPERSCRIPTS to indicate the timestep (iteration)
number and SUBSCRIPTS to indicate the function number):

v Y 4 nfi(e, YO, vy

YD = v Lo, v, )
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» Suppose we want to use Euler's method to approximate the solutions to

dy1

— = fA(t,n,

o 1(t1, y1,y2)

dy>

Pl f(t,y1,y2), t€[to, T], yi(to) = y10, y2(to) = y2,0-

» Then, using Taylor series,

tip) =yi(ti+h) = yi(t) + hyi(t;) + O(h?)
ya(tiv1) = yo(t; + h) ya(ti) + hyb(t:) + O(h?)

Q

yi(ti) + hfa(ti, ya(ti), ya(ti))
ya(ti) + hha(ti, ya (i), ya(ti)

Q

If we replace the functions by their approximations, we get the systems version
of Euler’s method (using SUPERSCRIPTS to indicate the timestep (iteration)
number and SUBSCRIPTS to indicate the function number):

v = vD paf(e, YO, YD)

YD = v Lo, v, )

or Y1) = YO  hf(y;, YO, ¥1)

Rz . _ [ f(t, Y1, Y2)
where Y = |: Y, } and (¢, Y1, Y2) = [ f(t, Y1, Y2)
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‘Euler’s Method for Systems‘

Euler's method for approximating the solution to the general first order

d -
system of n [VPs, d—}t/ =f(t,y), Vte[t, T], y(t)=:
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‘Euler’s Method for Systems‘

Euler's method for approximating the solution to the general first order

d -
system of n IVPs, d—}t/ =1f(t,y), Ytet, T], y(to)=%:

‘ Euler’'s Method for Systems‘

Yo = ¥(to) THEN
where

YD) = ¥O 4 hf(t;, YD) for i = 0,1,2...,N — 1.
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‘Euler’s Method for Systems‘

Euler's method for approximating the solution to the general first order

d -
system of n [VPs, d—}t/ =f(t,y), Vte[t, T], y(t)=:

‘ Euler’'s Method for Systems‘
Yo = y(to) THEN

where

YD) = ¥O 4 hf(t;, YD) for i = 0,1,2...,N — 1.
Yl fl(t7 YI;YZa"'vyn)
f2(t7 Yl; Y27 ey Yn)

Ya S o -
. and f(t, Y):f(t, Yl,Yz,...,Yn):

<
I

Yn fn(ta Y17Y27~--a Yn)
and Y,.(j) is the Euler approximation to y;(t;) (for i =1,2,...,n and
j=0,1,2,...,N).
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Reminder: ¥(+D) = ¥ 4 hf(t;, YO) fori =0,1,2...,N — 1

In summary, Euler’s method for a first order system of
ODEs simply consists of applying the scalar Euler’s
method to a vector of differential equations one
component at a time.
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Reminder: ¥(+D) = ¥ 4 hf(t;, YO) fori =0,1,2...,N — 1

In summary, Euler’s method for a first order system of
ODEs simply consists of applying the scalar Euler’s
method to a vector of differential equations one
component at a time.

» | include in the following pages a sample Euler's method
program for a system of two differential equations.
Modifying it for a system of 3 or more equations and for
Heun's method and the Runge-Kutta (fourth order)
methods is relatively straightforward. NOTE a somewhat
more sophisticated version will be also provided on the
course Moodle page.
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clear
clf

f = @(t,y) [-4xy(1)-2xy(2) + cos(t) + 4xsin(t);
3y (1) +y(2)-3*sin(t)];

% Here we give the exact solution if known. If not known, set to the
% this to return an appropriately-sized vector of zeros and ignore all
% subsequent references to the exact solution in this program
exact = @(t) [2*exp(-t) - 2*exp(-2*%t) + sin(t);
-3%exp(-t) + 2*exp(-2*t)];

n = input (’Enter the number of equations in your system of ODEs ’);

h=0.1;
t0 = 0; tN = 2;
yo = [0; -1];

if length(y0) "= n
disp(’Error, you entered an incorrect number of equations. Try again ’)
return;
end
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t = [t0:h:tN];
sizet = length(t);

% y(i,j) is the approximation to y_i(t_j)
y = zeros(n,sizet);
yexact = zeros(n, sizet);
for (k = 1:n)
y(k,1) = yo(k);
end

% Main Euler’s method loop
for k = 2:sizet

y(C,k) = y(:,k-1) + h*f(t(k-1), y(:,k-1));
end

for(k = 1l:sizet)
yexact(:,k) = exact(t(k));
end

for (mm = 1:n)
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fprintf (’\nPRINTING INFORMATION FOR FUNCTION %d\n\n’,mm);

fprintf(° i TIME Yi (APPROX) y(ti) (EXACT) ABS. ERROR\n’)
for k = 1:sizet
fprintf(°%3d  %8f  %10f %10f %10f\n’ ,k-1,t (k) ,y(mm,k) ,yexact (mm,k), abs(y(mm,k)-yexact(mm,k)))
end
end

disp(’’); ’% blank line

plotsoln=input (’Hit return for graphs of solutions versus time ’)
if isempty(plotsoln)
set(gca,’fontsize’,14)
for k = 1:n
plot(t,y(k,:),’linewidth’,2)
xlabel(’t’)
fprintf (’\nPLOTTING INFORMATION FOR FUNCTION %d\n\n’,k);
if k <n
disp(’Hit any key to see the next graph ’);
pause
end
end
end
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disp(’ ’) % blank line

if n == 2 7 phase plane plot
plotsoln=input (’Hit return for phase plane plot ’)
if isempty(plotsoln)
plot(y(1,:), y(2,:),’-r’);
xlabel(’y1’)
ylabel(’y2’)
end
end
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— Use the systems Euler's method with to solve

d)

% = —4yy — 2y; + cos(t) + 4sin(t) | (EXACT SOLUTION)

dy2 ; —t —2t | &
e = 3y1 + y2 — 3sin(t) yi(t) =2e7t — 2e~ %" +sin(t)

t€[0,2], y1(0)=0, y2(0) = -1 yo(t) = —3e™t 4272t
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— Use the systems Euler's method with to solve

—

LZ8
dt

2
dt

t€[0,2],

In vector form, this is

—4y1 — 2y» + cos(t) + 4sin(t) | (EXACT SOLUTION)

3y1 + y2 — 3sin(t) y1(t) = 2e7t — 2e72t +sin(t)

y1(0) =0, y2(0) = -1 yo(t) = —3et 4 2e72t
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— Use the systems Euler's method with to solve

d

% = — 4y, — 2y, + cos(t) + 4sin(t) | (EXACT SOLUTION)

dy2 ; —t —2t | &
e = 3y1 + y2 — 3sin(t) yi(t) =2e7t — 2e~ %" +sin(t)

t€[0,2], y1(0)=0, y2(0) = -1 yo(t) = —3e™t 4272t

—

d N
> In vector form, this is d;‘t/ =f(t,y1,y2), t€[0,2], y(0)= ( _(1) ) where

<t
I

59 /131



Euler's Method for Systems of First Order ODEs
Other Numerical Methods for Systems of First Order ODEs

Numerical Methods for Systems of First Order ODEs Heun’s Method

4th Order Runge-Kutta (RK4)

— Use the systems Euler's method with to solve

d

% —4yy — 2y; + cos(t) + 4sin(t) | (EXACT SOLUTION)

dy2 _ ; — et —2t | &

e = 3y1 + y2 — 3sin(t) yi(t) =2e7t — 2e~ %" +sin(t)
t€0,2], y(0)=0,y2(0)= -1 yo(t) = —3e7" +2e7%

—

d N
> In vector form, this is d;‘t/ =f(t,y1,y2), t€[0,2], y(0)= ( _(1) ) where

=_ ( nl(t) ? _ [ —4y1 — 2y2 + cos(t) + 4sin(t)
y= ( y;(t) ) and f(t,y1,y) = [ ! 3y1_'2_y2 " 3din(t) ]

P> You will be expected to know how to change easily between the vector and
non-vector form of such systems of ODEs.
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Reminder: solving % =f(t,y1,y2), telo,2], y0)= ( 7? ) with

y= ( 253 ) and ?(t,yl’yz) = |: e 3:‘,12}3;‘1053(,21,12?5]“(0 ]

‘ y1(t) and y,(t)- Exact Solutions and Euler's Method Approximations ‘

15 . . .
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Reminder: solving % = f(t,y1,y2), telo,2], y0)= ( 7? ) with

}7:( h(i; ) and ?(Lh,yz): |: —4yy ;,IQf;?séz%nttl)lsin(t) ]

‘ y1(t) and y;(t)- Error in Euler's Method Approximations ‘

0.5 1 15 2
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i TIME Y; (APPROX) | y(t;) (EXACT) | ABS. ERROR
0 | 0.000000 | 0.000000 0.000000 0.000000
1 0.100000 | 0.300000 0.272047 0.027953
2 | 0.200000 | 0.539434 0.495491 0.043043
3 | 0.300000 | 0.731125 0.679533 0.051591
4 | 0.400000 | 0.884960 0.831401 0.053559
5 | 0.500000 | 1.008510 0.956728 0.051782
16 | 1.600000 | 1.314846 1.321842 0.006996
17 | 1.700000 | 1.279670 1.200285 0.010615
18 | 1.800000 | 1.235906 1.249798 0.013892
19 | 1.900000 | 1.183836 1.200696 0.016860
20 | 2.000000 | 1.123791 1.143337 0.019546
i TIME Y; (APPROX) | y(t) (EXACT) | ABS. ERROR
0 | 0.000000 | —1.000000 —1.000000 0.000000
1 0.100000 | —1.100000 —1.077051 0.022949
2 | 0.200000 | —1.149950 —1.115552 0.034398
3 | 0.300000 | —1.162716 —1.124831 0.037884
4 | 0.400000 | —1.148306 —1.112302 0.036004
5 | 0.500000 | —1.114474 —1.083833 0.030641
16 | 1.600000 | —0.469265 —0.524165 0.054900
17 | 1.700000 | —0.421610 —0.481304 0.059694
18 | 1.800000 | —0.377370 —0.441249 0.063880
19 | 1.900000 | —0.336489 —0.403964 0.067475
20 | 2.000000 | —0.208877 —0.369375 0.070497
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— Use the systems Euler's method to solve x'/ — x" = t, t € [0,4],
x(0) = 6, X' (0) = —5, x”/(0) = 0. (EXACT SOLUTION,
1
x(t) =5—2et +3e7t — 5t2).

Numerical Methods for Systems of First Order ODEs
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— Use the systems Euler's method to solve x'/ — x" = t, t € [0,4],
x(0) = 6, X' (0) = —5, x”/(0) = 0. (EXACT SOLUTION,
1
x(t) =5—2et +3e7t — 5t2).

> | ANSWER | First we convert it to a system:

Letyi =x, yo=x', y3=x" =
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— Use the systems Euler's method to solve x'/ — x" = t, t € [0,4],

x(0) = 6, x'(0) = —5, x/(0) = 0. (EXACT SOLUTION,
t —t 1 2
x(t) =5—2e" +3e —Et).

> | ANSWER | First we convert it to a system:

Letyi =x, yo=x', y3=x" =
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i =
Y5 = y3
y; =
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— Use the systems Euler's method to solve x'/ — x" = t, t € [0,4],

x(0) = 6, x'(0) = —5, x/(0) = 0. (EXACT SOLUTION,
t —t 1 2
x(t) =5—2e" +3e —Et).

> | ANSWER | First we convert it to a system:

Letyi =x, yo=x', y3=x" =
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i =
Y5 = y3
i = w2+t
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— Use the systems Euler's method to solve x'/ — x" = t, t € [0,4],
x(0) = 6, X' (0) = —5, x”/(0) = 0. (EXACT SOLUTION,
1
x(t) =5—2et +3e7t — 5t2).

> | ANSWER | First we convert it to a system:

Let ys = x, yo=x', y3=x" =
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i =
Y5 = y3
i = w2+t

Meanwhile, the initial conditions become

y1(0) 6
y) = y2(0) = -5
y3(0) 0
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— Use the systems Euler's method to solve x'/ — x" = t, t € [0,4],

x(0) = 6, x'(0) = —5, x/(0) = 0. (EXACT SOLUTION,
t —t 1 2
x(t) =5—2e" +3e —Et).

> | ANSWER | First we convert it to a system:

Let ys = x, yo=x', y3=x" =

Numerical Methods for Systems of First Order ODEs

i =
Y5 = y3
i = w2+t

Meanwhile, the initial conditions become

y1(0) 6
y) = y2(0) = -5
y3(0) 0

(EXACT SOLUTION

yi(t) =
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— Use the systems Euler's method to solve x'/ — x" = t, t € [0,4],

x(0) = 6, x'(0) = —5, x/(0) = 0. (EXACT SOLUTION,
t —t 1 2
x(t) =5—2e" +3e —Et).

> | ANSWER | First we convert it to a system:

Let ys = x, yo=x', y3=x" =
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i =
Y5 = y3
i = w2+t

Meanwhile, the initial conditions become

y1(0) 6
y) = y2(0) = -5
y3(0) 0

(EXACT SOLUTION
2

— 1
yi(t) =5—2e' +3e7F — St n()=
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— Use the systems Euler's method to solve x'/ — x" = t, t € [0,4],

x(0) = 6, x'(0) = —5, x/(0) = 0. (EXACT SOLUTION,
t —t 1 2
x(t) =5—2e" +3e —Et).

> | ANSWER | First we convert it to a system:

Let ys = x, yo=x', y3=x" =
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i =
Y5 = y3
i = w2+t

Meanwhile, the initial conditions become

y1(0) 6
y@O) = ¥2(0) = =5
y3(0) 0
(EXACT SOLUTION
yi(t) =5 —2et +3e7 ¢t — %tz, yt)= —2et —3e7F—t, y3(t) =
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x(0) = 6, x'(0) = —5, x/(0) = 0. (EXACT SOLUTION,
t —t 1 2
x(t) =5—2e" +3e —Et).

> | ANSWER | First we convert it to a system:

Let ys = x, yo=x', y3=x" =
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i =
Y5 = y3
i = w2+t

Meanwhile, the initial conditions become

y1(0) 6
y(0) = ¥2(0) = -5
y3(0) 0
(EXACT SOLUTION
yi(t) =5 —2et +3e7 ¢t — %tz, yt) = —2et —3e7t—t, y3(t)= —2et +3e7F —1).
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— Use the systems Euler's method to solve x'/ — x" = t, t € [0,4],
x(0) = 6, X' (0) = —5, x”/(0) = 0. (EXACT SOLUTION,
1
x(t) =5—2et +3e7t — 5t2).

> | ANSWER | First we convert it to a system:

Letyi =x, yo=x', y3=x" =
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i =
Y5 = y3
i = w2+t

Meanwhile, the initial conditions become

y1(0) 6
y) = y2(0) = -5
y3(0) 0

(EXACT SOLUTION
yi(t) =5 —2et +3e7 ¢t — 1o yt) = —2et —3e7t—t, y3(t)= —2et +3e7F —1).
» We now need only make minor modifications to the earlier Euler's method
program for a system of 2 equations to get it to work for 3 equations. The
results are summarised on the following pages, first for h = 0.1 then for
h =0.01.
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y1(t), y2(t), and y3(t) - Exact Solutions and Euler's Method Approximations with h = 0.1

20 : : : : :
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y1(t), y2(t), and y3(t) - Error in Euler's Method Approximations with h = 0.1 ‘

20

15+

10 -
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TIME Y; (APPROX) | y(t;) (EXACT) | ABS. ERROR
0.000000 | 6.000000 6.000000 0.000000
0.100000 | 5.500000 5.499170 0.000830
0.200000 | 5.000000 4.993387 0.006613
38 | 3.800000 | —76.783943 —91.555257 14.771314
39 | 3.900000 | —84.650286 —101.349172 16.698887
40 | 4.000000 | —93.274168 —112.141353 18.867185
TIME Y; (APPROX) | y(t;) (EXACT) | ABS. ERROR
0.000000 | —5.000000 —5.000000 0.000000
0.100000 | —5.000000 —5.024854 0.024854
0.200000 | —5.050000 —5.098998 0.048998
38 | 3.800000 | —78.663431 —93.269481 14.606050
39 | 3.000000 | —86.238825 —102.765624 16.526799
40 | 4.000000 | —94.562854 —113.251247 18.688393
TIME Y; (APPROX) | y(t;) (EXACT) | ABS. ERROR
0.000000 | 0.000000 0.000000 0.000000
0.100000 | —0.500000 —0.495830 0.004170
0.200000 | —0.990000 —0.986613 0.003387
38 | 3.800000 | —75.753943 | —90.335257 14.581314
39 | 3.000000 | —83.240286 —99.744172 16.503887
40 | 4.000000 | —91.474168 —110.141353 18.667185
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y1(t), y2(t), and y3(t) - Exact Solutions and Euler’s Method Approximations with h = 0.01
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y1(t), y2(t), and y3(t) - Error in Euler's Method Approximations with h = 0.01 ‘
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TIME Y; (APPROX) | y(t;) (EXACT) | ABS. ERROR
0.000000 | 6.000000 6.000000 0.000000
0.010000 | 5.950000 5.940999 0.000001
0.020000 | 5.900000 5.899993 0.000007
3.980000 | —107.784316 | —10.898212 2.113895

399 | 3.990000 | —108.874055 —111.014330 2.140274

400 | 4.000000 | —109.974383 —112.141353 2.166970
TIME Y; (APPROX) | y(&) (EXACT) | ABS. ERROR
0.000000 | —5.000000 —5.000000 0.000000
0.010000 | —5.000000 —5.000250 0.000250
0.020000 | —5.000500 —5.000999 0.000499
3.980000 | —108.973906 —111.070125 2.096219

399 | 3.990000 | —110.032747 —112.155278 2.122531

400 | 4.000000 | —111.102086 —113.251247 2.149161
TIME Y; (APPROX) | y(t;) (EXACT) | ABS. ERROR
0.000000 | 0.000000 0.000000 0.000000
0.010000 | —0.050000 —0.049951 0.000049
0.020000 | —0.099900 —0.099807 0.000093
3.980000 | —105.884016 | —107.978012 2.093995

399 | 3.990000 | —106.933955 —109.054280 2.120324

400 | 4.000000 | —107.994383 —110.141353 2.146970
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< The relatively large errors in EXAMPLE 18 with stepsize h = 0.1
are a good reason why we move on now to other (higher order)
numerical methods for systems of first order |VPs.
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Other Numerical Methods for Systems of First Order ODES‘

< The relatively large errors in EXAMPLE 18 with stepsize h = 0.1
are a good reason why we move on now to other (higher order)
numerical methods for systems of first order |VPs.

< As mentioned earlier, the equations for the systems version of the
different numerical methods remain the same as their scalar
counterparts when written in vector notation (with the appropriate
vectorised interpretation of +,— and multiplication by h), and
applying a numerical IVP method to a system of ODEs simply
consists of applying the scalar form of that method to a vector of
differential equations one component at a time.
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Other Numerical Methods for Systems of First Order ODES‘

< The relatively large errors in EXAMPLE 18 with stepsize h = 0.1
are a good reason why we move on now to other (higher order)
numerical methods for systems of first order |VPs.

< As mentioned earlier, the equations for the systems version of the
different numerical methods remain the same as their scalar
counterparts when written in vector notation (with the appropriate
vectorised interpretation of +,— and multiplication by h), and
applying a numerical IVP method to a system of ODEs simply
consists of applying the scalar form of that method to a vector of
differential equations one component at a time.

> In these notes, we will only look at systems versions of Heun's
method and the 4th order Runge-Kutta method.
(For systems versions of other methods, such as TS(2) and AB(2), you can
consult the MATH1106 Lecture Notes [contact me if you do not have access to
those notes and wish to see them] or books on numerical solutions to ODEs).
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] Heun's Method \

< In summary, Heun’s method for a first order system
of ODEs simply consists of applying the scalar
Heun’s method to a vector of differential equations

one component at a time.

71/131



Euler’'s Method for Systems of First Order ODEs
Other Numerical Methods for Systems of First Order ODEs

Numerical Methods for Systems of First Order ODEs Heun'’s Method
4th Order Runge-Kutta (RK4)

] Heun's Method \

< In summary, Heun’s method for a first order system
of ODEs simply consists of applying the scalar
Heun’s method to a vector of differential equations

one component at a time.

< The TWO-STEP (see Lecture 2) version of the method
is summarised on the following page for a system of n
first order IVPs.
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’ Heun’s Method for Systems

Heun's method for approximating the solution to the general first order system of n

dy _ = _ - "
IVPs, E = f(tay)a vte [t07 T]7 y(tﬂ) = Yo:

72/131



Euler’'s Method for Systems of First Order ODEs

Other Numerical Methods for Systems of First Order ODEs
Heun’s Method

4th Order Runge-Kutta (RK4)

Numerical Methods for Systems of First Order ODEs

’ Heun’s Method for Systems

Heun's method for approximating the solution to the general first order system of n

dy _ = _ - "
IVPs, E = f(tay)a vte [t07 T]7 y(tﬂ) = Yo:

‘ Heuns’s Method for Systems ‘

Yo = j(to) THEN

Ytemp(+1) = YO 4 hf(t;, ¥ )) AND
V6 = O 4 b F(t;, YO) + F(tir1, “—*Ytempwﬂ fori=0,1,2...,N—1.
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’ Heun’s Method for Systems

Heun's method for approximating the solution to the general first order system of n

dy _ = _ - "
IVPs, E = f(tay)a vte [t07 T]7 y(tﬂ) = Yo:

‘ Heuns’s Method for Systems ‘

Yo = j(to) THEN

Yeemp(+t1) = Y0 4 n(t;, ¥ () AND

Yi+) = YO 4+ s F(t;, 7(")) + F(tiy1, Ytemp(""’l)w fori=0,1,2...

,N—1
where
Y1 f(t, Y1, Y2, ..., Yn)
Y> fg(t Y1, Yo,. .. Yn)
— = N ) k) ) 3y
Y = and £(t, Y) = F(t, Y1, Yoy ..., Yn) = .
Yn fn(t7 Y17Y27~'~7Yn)
and YI.U) is the Heun approximation to y;(t;) (for i =1,2,...,n and
j=0,1,2,...,N).
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— - Redo EXAMPLE 17 using Heun’s method: use the
systems Heun's method with to solve

% = —4y; — 2y; + cos(t) + 4sin(t) | (EXACT SOLUTION)
d
% = 3y1 + y2 — 3sin(t) y1(t) = 2e7t — 2e72t +sin(t)

t€[0,2], y1(0) =0, y2(0) = —1 yo(t) = —3e~t + 272t
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Numerical Methods for Systems of First Order ODEs

— - Redo EXAMPLE 17 using Heun’s method: use the

systems Heun's method with to solve

d

% = —4yy — 2y; + cos(t) + 4sin(t) | (EXACT SOLUTION)

dy» _ ) - ot |
g = 3y1 + y2 — 3sin(t) yi(t) =2e7t — 2e 2" +sin(t)

t€[0,2], y1(0) =0, y2(0) = —1 yo(t) = —3e~t + 272t

< Recall that in vector form, this is
dy . . 0
dt =f(t,y1,y2), t€1]0,2], y(0) = ( -1 )r where

=_ ( n() i _ [ —4y1 — 2y2 + cos(t) + 4sin(t)
y= ( y;(t) ) and f(t,y1,y2) = { ! 3y1-|2-y2—3sin(t) }
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Reminder: solving %‘f =f(t,y1,y), te€0,2, 7(0)= ( _2 ) with

= 2 —4y1 — 2y> + + 4sin(t
y:< zg:; ) and f(t,y1,y2) = |: 1 3y1{r2y2<:7os3(ts)in(t)sn() ]

‘ y1(t) and y,(t)- Exact Solutions and Heun’s Method Approximations

15 . . .

yl exa% %
y2 exalt =

0 0.5 1 15 2
t

-15 L L
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Reminder: solving % = f(t,y1,y2), telo,2], y0)= ( 7? ) with

y= ( }/152 ) and ?(L,VL,VZ) = |: i 3:‘,12);2;?53(,2&1»;5]"0) ]

‘ y1(t) and y;(t)- Error in Heun's Method Approximations ‘

0.006 : :
s Ermgr vl

0.005 - X ]

0.004 -

0.003
0.002 | ]

0.001 L/

0.5 1 15 2
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i TIME Y; (APPROX) | y(t;) (EXACT) | ABS. ERROR || Euler's Error
0 | 0.000000 | 0.000000 0.000000 0.000000 0.000000
1 0.100000 | 0.269717 0.272047 0.002330 0.027953
2 | 0.200000 | 0.491624 0.495491 0.003867 0.043943
3 | 0.300000 | 0.674699 0.679533 0.004834 0.051591
4 | 0.400000 | 0.826001 0.831401 0.005400 0.053559
5 | 0.500000 | 0.951041 0.956728 0.005687 0.051782
16 | 1.600000 | 1.317525 1.321842 0.004318 0.006996
17 | 1.700000 | 1.286144 1.290285 0.004141 0.010615
18 | 1.800000 | 1.245840 1.249798 0.003958 0.013892
19 | 1.900000 | 1.196929 1.200696 0.003766 0.016860
20 | 2.000000 | 1.139774 1.143337 0.003563 0.019546
i TIME Y; (APPROX) | y(t;) (EXACT) | ABS. ERROR || Euler’s Error
0 | 0.000000 | —1.000000 —1.000000 0.000000 0.000000
1 0.100000 | —1.074975 —1.077051 0.002076 0.022949
2 | 0.200000 | —1.112178 —1.115552 0.003374 0.034398
3 | 0.300000 | —1.120715 —1.124831 0.004117 0.037884
4 | 0.400000 | —1.107832 —1.112302 0.004470 0.036004
5 0.500000 | —1.079276 —1.083833 0.004557 0.030641
16 | 1.600000 | —0.522366 —0.524165 0.001799 0.054900
17 | 1.700000 | —0.479718 —0.481304 0.001586 0.059694
18 | 1.800000 | —0.439865 —0.441249 0.001385 0.063880
19 | 1.900000 | —0.402772 —0.403964 0.001192 0.067475
20 | 2.000000 | —0.368369 —0.369375 0.001006 0.070497
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RK4 Method

< In summary, the RK4 method for a first order
system of ODEs simply consists of applying the
scalar RK4 method to a vector of differential
equations one component at a time.
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RK4 Method

< In summary, the RK4 method for a first order
system of ODEs simply consists of applying the
scalar RK4 method to a vector of differential
equations one component at a time.

< You should try to implement this for two equations by
modifying the earlier Euler's or Heun's method program;
this is easier if you write it out in vector form and then
think of how to update the components of those vectors.
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‘ RK4 Method for Systems

Yo = 7(ty) THEN
ky = hf(t, 0)_}
ko = hf(ti+ 1h, Y(">+%El)
ks = hf(t+ i, 7(' 1%)
A = hf(t+h YO & k3)
AND

Y+ = YO 4 ta+ i+ ik + Ltk

fori=0,1,2...,N—1

where
Y1 fi(t, Y1, Yo, ..., Yn)
Y> fg(t Y1, Yo, ... Y,,)
— - — - I ) I ’
Y = _ and F(t,Y)=F(t,Y1,Ys,..., Yn) = .
Y fn(t7 Y17Y27~~~:Yn)

and Yl.(j) is the RK4 approximation to y;(t;) (for i =1,2,...,nand j=0,1,2,...,N).
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— - Redo EXAMPLES 17 & 19 using the RK4
method: use the systems RK4 method with to solve

d

% = —4yy — 2y; + cos(t) + 4sin(t) | (EXACT SOLUTION)

dy» _ ) - ot |
g = 3y1 + y2 — 3sin(t) yi(t) =2e7t — 2e 2" +sin(t)

t€[0,2], y1(0) =0, y2(0) = —1 yo(t) = —3e~t + 272t
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— - Redo EXAMPLES 17 & 19 using the RK4

method: use the systems RK4 method with to solve
dy1 _

- —4y; — 2y, + cos(t) + 4sin(t) | (EXACT SOLUTION)
dy> .

22 = 3 — 3sin(t

™ y1+ y2 sin(t)

yi(t) = 2e~t — 2e72t 4 sin(t)
t€10,2], y1(0)=0, y2(0) = —1

yo(t) = —3e~t + 272t

< Recall that in vector form, this is

d - — 0

Y e, e 70 =( ] ) where
t

y= (70

2 _ [ —4y1 — 2y2 + cos(t) + 4sin(t)
ey ) amd feonom = [ TRt en0
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Reminder: solving %‘f =f(t,y1,y), te€0,2, 7(0)= ( _2 ) with

~ - —4y; — 2yy + +4si
y:( ,{;E:; ) and f(t,y1,y2) = |: 7 3y1i2y2 C:)sgi)in(t)sn(t) ]

’ y1(t) and yy(t)- Exact Solutions and RK4 Method Approximations

15 . . .

yl exa% %
y2 exalt =

0 0.5 1 15 2
t

-15 L L
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Reminder: solving % = f(t,y1,y2), telo,2], y0)= ( 7? ) with

y= ( }/152 ) and ?(L,VL,VZ) = |: i 3:‘,12);2;?53(,2&1»;5]"0) ]

‘ y1(t) and y;(t)- Error in RK4 Method Approximations ‘

e | | Erer V3 =
1.5e-05 e ]
1le-05 + ]
5e-06 + |
0 05 i 15 2

81/131



Euler’'s Method for Systems of First Order ODEs

Other Numerical Methods for Systems of First Order ODEs
Heun’s Method

4th Order Runge-Kutta (RK4)

Numerical Methods for Systems of First Order ODEs

i TIME Y; (APPROX) y(t;) (EXACT) ABS. ERROR Heun's Error Euler’s Error
0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1 0.100000 0.272041 0.272047 0.000005 0.002330 0.027953
2 0.200000 0.495482 0.495491 0.000009 0.003867 0.043943
3 0.300000 0.679522 0.679533 0.000012 0.004834 0.051591
4 0.400000 0.831387 0.831401 0.000013 0.005400 0.053559
5 0.500000 0.956714 0.956728 0.000014 0.005687 0.051782
16 1.600000 1.321828 1.321842 0.000014 0.004318 0.006996
17 1.700000 1.290272 1.290285 0.000013 0.004141 0.010615
18 | 1.800000 | 1.249785 1.249798 0.000013 0.003958 0.013892
19 | 1.900000 | 1.200683 1.200696 0.000013 0.003766 0.016860
20 | 2.000000 | 1.143324 1.143337 0.000012 0.003563 0.019546
i TIME Y; (APPROX) | y(t) (EXACT) | ABS. ERROR || Heun's Error | Euler's Error
0 0.000000 —1.000000 —1.000000 0.000000 0.000000 0.000000
1 0.100000 —1.077045 —1.077051 0.000005 0.002076 0.022949
2 0.200000 —1.115543 —1.115552 0.000009 0.003374 0.034398
3 0.300000 —1.124820 —1.124831 0.000011 0.004117 0.037884
4 0.400000 —1.112290 —1.112302 0.000013 0.004470 0.036004
5 0.500000 —1.083820 —1.083833 0.000014 0.004557 0.030641
16 | 1.600000 —0.524152 —0.524165 0.000013 0.001799 0.054900
17 1.700000 —0.481292 —0.481304 0.000012 0.001586 0.059694
18 1.800000 —0.441237 —0.441249 0.000012 0.001385 0.063880
19 1.900000 —0.403953 —0.403964 0.000012 0.001192 0.067475
20 2.000000 —0.369363 —0.369375 0.000011 0.001006 0.070497
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End of Section
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Geometrical Study of Solutions to Systems of First Order ODEs

< More so than for single differential equations, systems of differential
equations are hard to solve (in the earlier part of this lecture we
only considered a very small subset: linear homogeneous systems
with constant coefficient matrices). Furthermore, often we are just
interested in patterns or general behaviour of solutions to the
scenario being modelled by a system of ODEs, and these can be
determined by a geometric analysis of the system of ODEs without
solving it!.
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Geometrical Study of Solutions to Systems of First Order ODEs

< More so than for single differential equations, systems of differential
equations are hard to solve (in the earlier part of this lecture we
only considered a very small subset: linear homogeneous systems
with constant coefficient matrices). Furthermore, often we are just
interested in patterns or general behaviour of solutions to the
scenario being modelled by a system of ODEs, and these can be
determined by a geometric analysis of the system of ODEs without
solving it!.

< Much of this geometrical work will be done for systems of 2 ODEs,
but the (often relatively straightforward) generalisations to systems
of 3 or more ODEs will be mentioned.
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Geometrical Study of Solutions to Systems of First Order ODEs

< More so than for single differential equations, systems of differential
equations are hard to solve (in the earlier part of this lecture we
only considered a very small subset: linear homogeneous systems
with constant coefficient matrices). Furthermore, often we are just
interested in patterns or general behaviour of solutions to the
scenario being modelled by a system of ODEs, and these can be
determined by a geometric analysis of the system of ODEs without
solving it!.

< Much of this geometrical work will be done for systems of 2 ODEs,
but the (often relatively straightforward) generalisations to systems
of 3 or more ODEs will be mentioned.

< Again, much of the work will be done initially for linear constant
coefficient systems of ODEs, and then the very straighforward
generalisation to nonlinear systems will be covered.
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< The geometrical techniques we will use on general systems
of first order ODEs will fall into three broad categories:

85 /131



Introduction
Phase Space/Portraits, Direction Fields, Steady States - Vocabu

Classification of Steady States for Linear Systems of ODEs

Geometrical Study of Solutions to Systems of First Order ODEs Classification of Steady States for Nonlinear Systems of ODEs

< The geometrical techniques we will use on general systems
of first order ODEs will fall into three broad categories:

1. Generating and interpreting direction fields in the phase
space.
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< The geometrical techniques we will use on general systems
of first order ODEs will fall into three broad categories:

1. Generating and interpreting direction fields in the phase
space.

2. Creating phase portraits (by hand).
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Geometrical Study of Solutions to Systems of First Order ODEs

< The geometrical techniques we will use on general systems
of first order ODEs will fall into three broad categories:

1. Generating and interpreting direction fields in the phase
space.

2. Creating phase portraits (by hand).

3. Finding and classifying the steady states of the system
of ODEs using calculus and linear algebra.

85 /131



Introduction
Phase Space/Portraits, Direction Fields, Steady States - Vocabu

Classification of Steady States for Linear Systems of ODEs

Geometrical Study of Solutions to Systems of First Order ODEs Classification of Steady States for Nonlinear Systems of ODEs

< The geometrical techniques we will use on general systems
of first order ODEs will fall into three broad categories:

1. Generating and interpreting direction fields in the phase
space.

2. Creating phase portraits (by hand).

3. Finding and classifying the steady states of the system
of ODEs using calculus and linear algebra.

» Sometimes information from number 3 is used to help
inform the creation of phase portraits in number 2 and/or
to help choose a suitable domain in which to generate a

direction field in number 1.
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Phase Space, Phase Portraits, Direction Fields, Steady States - Vocabulary

< This sub-section is essentially a crucial vocabulary lesson.
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‘ Phase Space, Phase Portraits, Direction Fields, Steady States - Vocabulary

< This sub-section is essentially a crucial vocabulary lesson.

> | DEFINITION | A | phase space | for a system of n first order

d
differential equations d—{ = f(t,y¥) is simply an n—dimensional

coordinate system with axes y;, i =1,...,n, in which the trajectory
yi(t)

of the solution vector y = . can be traced out as t
yn(t)

increases.

86 /131



Introduction
Phase Space/Portraits, Direction Fields, Steady States - Vocabu

Classification of Steady States for Linear Systems of ODEs
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‘ Phase Space, Phase Portraits, Direction Fields, Steady States - Vocabulary

< This sub-section is essentially a crucial vocabulary lesson.

> | DEFINITION | A | phase space | for a system of n first order

d
differential equations d—{ = f(t,y¥) is simply an n—dimensional

coordinate system with axes y;, i =1,...,n, in which the trajectory
yi(t)

of the solution vector y = . can be traced out as t
yn(t)

increases.

> In practice, a set of such solution trajectories can only easily
be visualised for systems of 2 (or 3) ODEs, in which case it is

called a | phase plane | .
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‘ Phase Space, Phase Portraits, Direction Fields, Steady States - Vocabulary

< This sub-section is essentially a crucial vocabulary lesson.

> | DEFINITION | A | phase space | for a system of n first order

d
differential equations d—{ = f(t,y¥) is simply an n—dimensional

coordinate system with axes y;, i =1,...,n, in which the trajectory
yi(t)

of the solution vector y = . can be traced out as t
yn(t)

increases.

> In practice, a set of such solution trajectories can only easily
be visualised for systems of 2 (or 3) ODEs, in which case it is

called a | phase plane | .

— All of the subsequent definitions of key terminology such a nullclines and steady
states will be related to/based on the graphs of solutions in phase space.
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< The phase plane (more generally, phase space) is a powerful tool for
making sense of the behaviour of solutions to autonomous systems
of ODEs - which often arise in modelling biological processes.
Indeed, it is often more informative than the graphs of individual
solutions as functions of time, y;(t) versus t.
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< The phase plane (more generally, phase space) is a powerful tool for
making sense of the behaviour of solutions to autonomous systems
of ODEs - which often arise in modelling biological processes.
Indeed, it is often more informative than the graphs of individual
solutions as functions of time, y;(t) versus t.

< One can also re-create (approximately) those graphs of individual
solutions versus time from a phase plane plot of the solutions (and
vice versa, although we won't really need this).
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< The phase plane (more generally, phase space) is a powerful tool for
making sense of the behaviour of solutions to autonomous systems
of ODEs - which often arise in modelling biological processes.
Indeed, it is often more informative than the graphs of individual
solutions as functions of time, y;(t) versus t.

< One can also re-create (approximately) those graphs of individual
solutions versus time from a phase plane plot of the solutions (and
vice versa, although we won't really need this). This is possibly best
illustrated by an example.

> On the following page is the phase plot for the ODE system

To(90)(5D) w0 (1)
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< The phase plane (more generally, phase space) is a powerful tool for
making sense of the behaviour of solutions to autonomous systems
of ODEs - which often arise in modelling biological processes.
Indeed, it is often more informative than the graphs of individual
solutions as functions of time, y;(t) versus t.

< One can also re-create (approximately) those graphs of individual
solutions versus time from a phase plane plot of the solutions (and
vice versa, although we won't really need this). This is possibly best
illustrated by an example.

> On the following page is the phase plot for the ODE system

To(90)(5D) w0 (1)

along with plots of y; and y» versus t and a description of how one
could get from the phase plane plot to the solutions versus time
plots.

87 /131



Introduction
Phase Space/Portraits, Direction Fields, Steady States - Vocabu

Classification of Steady States for Linear Systems of ODEs

Geometrical Study of Solutions to Systems of First Order ODEs Classification of Steady States for Nonlinear Systems of ODEs

Phase Plane Plot vi Versus t Plot
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Phase Plane Plot vi Versus t Plot

=

> Starting at (y1,y2) = (1,1) in the phase plane, we see that the value of y;
increases briefly to its peak slightly above 1 then decreases all the way down to
a value slightly below —1 then increases all the way to 1 again.
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> Starting at (y1,y2) = (1,1) in the phase plane, we see that the value of y;
increases briefly to its peak slightly above 1 then decreases all the way down to
a value slightly below —1 then increases all the way to 1 again.

> At the same time, y» decreases to a lowest value of just below —2 (which
coincides with when y; is 0, then it increases to just above 2 (again coinciding
with when y; is 0), then descends again to 1.
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Phase Plane Plot vi Versus t Plot

=

> Starting at (y1,y2) = (1,1) in the phase plane, we see that the value of y;
increases briefly to its peak slightly above 1 then decreases all the way down to
a value slightly below —1 then increases all the way to 1 again.

> At the same time, y» decreases to a lowest value of just below —2 (which
coincides with when y; is 0, then it increases to just above 2 (again coinciding
with when y; is 0), then descends again to 1.

» These two solution behaviours as functions of time are confirmed by the second
plot above.
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Steady States

< As for single autonomous ODEs, the equilibrium points of an autonomous

Geometrical Study of Solutions to Systems of First Order ODEs

d
system of ODEs d—}; = f(¥) are just the solutions to

f(7) = 0.
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d
system of ODEs d—}; = f(¥) are just the solutions to

f(7) = 0.

When dealing with systems of ODEs, these equilibrium points are typically
called steady states (for hopefully obvious reasons).
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d
system of ODEs d—}; = f(¥) are just the solutions to

f(7) = 0.

When dealing with systems of ODEs, these equilibrium points are typically
called steady states (for hopefully obvious reasons).

< NOTE to find the steady states of a nonlinear system of ODEs, one has to
solve a nonlinear system of equations - so some of the methods mentioned in
Lecture 3 and Tutorial 3 such as the use of Matlab’s in-built function £solve
can be used.
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d
system of ODEs d—}; = f(¥) are just the solutions to

f(7) = 0.

When dealing with systems of ODEs, these equilibrium points are typically
called steady states (for hopefully obvious reasons).

< NOTE to find the steady states of a nonlinear system of ODEs, one has to
solve a nonlinear system of equations - so some of the methods mentioned in
Lecture 3 and Tutorial 3 such as the use of Matlab’s in-built function £solve
can be used.

» | EXAMPLE 21 |: If Apxn is a non-singular matrix then the only steady state in

th t. dy Ay i
e system — = IS
Y p y
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solve a nonlinear system of equations - so some of the methods mentioned in
Lecture 3 and Tutorial 3 such as the use of Matlab’s in-built function £solve
can be used.

» | EXAMPLE 21 |: If Apxn is a non-singular matrix then the only steady state in

d -
the system d—{ = Ay is the unique solution to Ay = 0, which is the
n—dimensional O vector.
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Steady States

< As for single autonomous ODEs, the equilibrium points of an autonomous

Geometrical Study of Solutions to Systems of First Order ODEs

d
system of ODEs d—}; = f(¥) are just the solutions to

f(7) = 0.

When dealing with systems of ODEs, these equilibrium points are typically
called steady states (for hopefully obvious reasons).

< NOTE to find the steady states of a nonlinear system of ODEs, one has to
solve a nonlinear system of equations - so some of the methods mentioned in
Lecture 3 and Tutorial 3 such as the use of Matlab’s in-built function £solve
can be used.

» | EXAMPLE 21 |: If Apxn is a non-singular matrix then the only steady state in

d -
the system d—{ = Ay is the unique solution to Ay = 0, which is the
n—dimensional O vector.
» Thus the only steady state of (nonsingular) linear systems of ODEs is the origin
in phase space.
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. dy 6y1 + 6y2 + 12
> | EXAMPLE 22 |: Find the steady state(s) of pri ( 6)}:11 T 6)}:2% _ o ) .
>

Geometrical Study of Solutions to Systems of First Order ODEs

90 /131



Introduction
Phase Space/Portraits, Direction Fields, Steady States - Vocabu

Classification of Steady States for Linear Systems of ODEs
Classification of Steady States for Nonlinear Systems of ODEs

. dy 6y1 + 6y> + 12
> | EXAMPLE 22 |: Find the steady state(s) of pri ( 6)}:11 T 6)}:2% _ o ) .
» | ANSWER | We seek to solve the simultaneous equations

6y1 +6y2+12=0 and 6y, +6yZ —24=0.

Geometrical Study of Solutions to Systems of First Order ODEs
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6y1 +6y2+12=0 and 6y, +6yZ —24=0.

Geometrical Study of Solutions to Systems of First Order ODEs

Setting the two equations equal to each other since they are both 0, we get
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Setting the two equations equal to each other since they are both 0, we get

6ys —24=6y,+12 = y2—y-6=0 = (—3)(2+2)=0
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Setting the two equations equal to each other since they are both 0, we get
6ys —24=6y,+12 = y2—y-6=0 = (—3)(2+2)=0

y2=3,-2

To find the corresponding values for y; we can use either (or both) equation(s).
For example using the first one we get
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Setting the two equations equal to each other since they are both 0, we get
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y2=3,-2

To find the corresponding values for y; we can use either (or both) equation(s).
For example using the first one we get

y2=3 = 6y1+6(3)+12=0 =
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y2=3,-2

To find the corresponding values for y; we can use either (or both) equation(s).
For example using the first one we get

y2=3 = 6y1+6(3)+12=0 =
Similarly, y» = —2 => 6y; + 6(—2) + 12 =0
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. dy 6y1 + 6y> + 12
> | EXAMPLE 22 |: Find the steady state(s) of pri ( 6)}:11 T 6)}:2% _ o ) .
» | ANSWER | We seek to solve the simultaneous equations

6y1 +6y2+12=0 and 6y, +6yZ —24=0.

Geometrical Study of Solutions to Systems of First Order ODEs

Setting the two equations equal to each other since they are both 0, we get
6ys —24=6y,+12 = y2—y-6=0 = (—3)(2+2)=0

y2=3,-2

To find the corresponding values for y; we can use either (or both) equation(s).
For example using the first one we get

»=3 = 6n+6(3)+12=0 = 6n=-30 =[n=-5]
Similarly, yp = =2 = 6y1 + 6(—2)+12=0 =

So the steady states are: (0,—2) and (-5,3).
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6y1 + 6y> + 12 )

. dy
> | EXAMPLE 22 |: Find the steady state(s) of pri ( 6y1 + 6y2 — 24
» | ANSWER | We seek to solve the simultaneous equations

6y1 +6y2+12=0 and 6y, +6yZ —24=0.
Setting the two equations equal to each other since they are both 0, we get
6ys —24=6y,+12 = y2—y—6=0 = (p—3)(2+2)=0
y2 =3,-2.

To find the corresponding values for y; we can use either (or both) equation(s).
For example using the first one we get
y2=3 = 6y1+6(3)+12=0 = 6y1=-30

Similarly, yo = =2 = 6y;1 + 6(—2)+12=0 = vi

(—5,3).

So the steady states are:  (0,—2) and

Or just use fsolve as described in Tutorial 3, but note you will have to use
different starting points (ordered pairs) to get the two different steady states.
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6y1 + 6y2 + 12

. dy
> | EXAMPLE 22 |: Find the steady state(s) of pri ( 6y1 + 6y2 — 24 ) .
» | ANSWER | We seek to solve the simultaneous equations

6y1 +6y2+12=0 and 6y, +6yZ —24=0.
Setting the two equations equal to each other since they are both 0, we get
6ys —24=6y,+12 = y2—y—6=0 = (p—3)(2+2)=0
y2 =3,-2.

To find the corresponding values for y; we can use either (or both) equation(s).
For example using the first one we get
y2=3 = 6y1+6(3)+12=0 = 6y1=-30

Similarly, yo = =2 = 6y;1 + 6(—2)+12=0 = vi

So the steady states are: (0,—2) and (-5,3).

~~ Or just use fsolve as described in Tutorial 3, but note you will have to use
different starting points (ordered pairs) to get the two different steady states.
» I'd suggest plotting the two graphs together to see approximately where they
intersect and then choosing starting values close to each intersection point.
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Types and Stability of Steady States

< As for single autonomous ODEs, the steady states of autonomous systems of
ODEs can be classifed by their stability. They can also be classified by their
type - which is a way of categorising how solutions close to them behave.
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< As for single autonomous ODEs, the steady states of autonomous systems of
ODEs can be classifed by their stability. They can also be classified by their
type - which is a way of categorising how solutions close to them behave. For

d
the autonomous ODE system di}t/ = f(¥) a steady state y; is:
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< As for single autonomous ODEs, the steady states of autonomous systems of
ODEs can be classifed by their stability. They can also be classified by their
type - which is a way of categorising how solutions close to them behave. For

d
the autonomous ODE system di}t/ = f(¥) a steady state y; is:

> | asymptotically stable/a sink |if all solution trajectories in the phase

space which start out near to ¥ move closer to ¥y as t — oo;
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Types and Stability of Steady States

< As for single autonomous ODEs, the steady states of autonomous systems of
ODEs can be classifed by their stability. They can also be classified by their
type - which is a way of categorising how solutions close to them behave. For

d
the autonomous ODE system di}t/ = f(¥) a steady state y; is:

> | asymptotically stable/a sink

if all solution trajectories in the phase

space which start out near to ¥ move closer to ¥y as t — oo;

> | unstable/repelling/(a source)

if some solution trajectories in the

phase space which starts out near to jp move away from jj as t — oo;
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Types and Stability of Steady States

< As for single autonomous ODEs, the steady states of autonomous systems of
ODEs can be classifed by their stability. They can also be classified by their
type - which is a way of categorising how solutions close to them behave. For

d
the autonomous ODE system di}t/ = f(¥) a steady state y; is:

> | asymptotically stable/a sink

if all solution trajectories in the phase

space which start out near to ¥ move closer to ¥y as t — oo;

> | unstable/repelling/(a source)

if some solution trajectories in the

phase space which starts out near to jp move away from jj as t — oo;

> | stable |[if each solution trajectory in the phase space which starts out

near to yp stays the same distance away from ¥ as t — oo.
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< There are four main categories of steady states:
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1. Centres.
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< There are four main categories of steady states:
1. Centres. These are always STABLE.

2. Spiral Points, also called Focuses.
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< There are four main categories of steady states:
1. Centres. These are always STABLE.

2. Spiral Points, also called Focuses. These can be ASYMPTOTICALLY
STABLE or UNSTABLE.
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1.

Centres. These are always STABLE.

Spiral Points, also called Focuses. These can be ASYMPTOTICALLY
STABLE or UNSTABLE.

Saddle Points.
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< There are four main categories of steady states:
1. Centres. These are always STABLE.

2. Spiral Points, also called Focuses. These can be ASYMPTOTICALLY
STABLE or UNSTABLE.

3. Saddle Points. These are always UNSTABLE

4. Nodes, both proper and improper. These can be ASYMPTOTICALLY
STABLE or UNSTABLE.
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< There are four main categories of steady states:
1. Centres. These are always STABLE.

2. Spiral Points, also called Focuses. These can be ASYMPTOTICALLY
STABLE or UNSTABLE.

3. Saddle Points. These are always UNSTABLE

4. Nodes, both proper and improper. These can be ASYMPTOTICALLY
STABLE or UNSTABLE.

» Instead of giving formal definitions at this point, | will just show you what they
look like in a phase plane and highlight their key features, as well as show
representative plots in the t-y plane.
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» Instead of giving formal definitions at this point, | will just show you what they
look like in a phase plane and highlight their key features, as well as show
representative plots in the t-y plane. Knowing the names is less important than
knowing the behaviours and how to determine those behaviours for a given
steady state.
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< There are four main categories of steady states:
1. Centres. These are always STABLE.

2. Spiral Points, also called Focuses. These can be ASYMPTOTICALLY
STABLE or UNSTABLE.

3. Saddle Points. These are always UNSTABLE

4. Nodes, both proper and improper. These can be ASYMPTOTICALLY
STABLE or UNSTABLE.

» Instead of giving formal definitions at this point, | will just show you what they
look like in a phase plane and highlight their key features, as well as show
representative plots in the t-y plane. Knowing the names is less important than
knowing the behaviours and how to determine those behaviours for a given
steady state.

» As a useful exercise, with each steady state type in what follows try to think of
the types of solutions to linear homogeneous constant coefficient systems

T Ay (based on the types of eigenvalues of A) which coincide with the

dt
steady state type based on the solution plots in the t-y plane.
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< There are four main categories of steady states:
1. Centres. These are always STABLE.

2. Spiral Points, also called Focuses. These can be ASYMPTOTICALLY
STABLE or UNSTABLE.

3. Saddle Points. These are always UNSTABLE

4. Nodes, both proper and improper. These can be ASYMPTOTICALLY
STABLE or UNSTABLE.

» Instead of giving formal definitions at this point, | will just show you what they
look like in a phase plane and highlight their key features, as well as show
representative plots in the t-y plane. Knowing the names is less important than
knowing the behaviours and how to determine those behaviours for a given
steady state.

» As a useful exercise, with each steady state type in what follows try to think of
the types of solutions to linear homogeneous constant coefficient systems

Z—f = Ay (based on the types of eigenvalues of A) which coincide with the

steady state type based on the solution plots in the t-y plane.
> In the following diagrams, the origin (0, 0), is the steady state.
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< The choice of the name centre is obvious from the phase plane plot.
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< The choice of the name centre is obvious from the phase plane plot.

< The solutions are periodic functions which each oscillate around its component
of the steady state.
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< The choice of the name spiral point or focus is obvious from the phase plane
plot.
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< The choice of the name spiral point or focus is obvious from the phase plane
plot.

< This shows an asymptotically stable spiral point. In an unstable spiral point, the
arrows would point in the opposite direction (away from the origin).
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Phase Plane Plot Sample Solution vs Time Plot

< The choice of the name spiral point or focus is obvious from the phase plane
plot.

< This shows an asymptotically stable spiral point. In an unstable spiral point, the
arrows would point in the opposite direction (away from the origin).

< The sample solutions for an asymptotically stable spiral point are shown. Each
function oscillates around its component of the steady state and the amplitude
of those oscillations decrease with increasing time. For an unstable spiral point,
the oscillations would increase with increasing time.
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< The choice of the name saddle point is obvious from the phase plane plot if one
remembers that term from optimisation of functions of 2 independent variables.
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Saddle Point
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< The choice of the name saddle point is obvious from the phase plane plot if one
remembers that term from optimisation of functions of 2 independent variables.

< The sample solutions are representative: one of the solutions always approaches
its component of the steady state and the other always diverges away from its
component of the steady state as t — co.
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Phase Plane Plot Sample Solution vs Time Plot

< The choice of the name saddle point is obvious from the phase plane plot if one
remembers that term from optimisation of functions of 2 independent variables.

< The sample solutions are representative: one of the solutions always approaches
its component of the steady state and the other always diverges away from its
component of the steady state as t — co.

< So saddle points are always unstable.
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< This shows a proper node. The plots on the next page show improper nodes.
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< This shows a proper node. The plots on the next page show improper nodes.

< This node is asymptotically stable (a sink). On the following page, one node is
unstable and the other is asymptotically stable. Obviously, reversing the arrows
on the diagrams changes an asymptotically stable node to unstable and vice
versa.
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Direction Fields

— As with single ODEs, direction fields, drawn in phase space, are helpful in
determining the general behaviour of solutions to system of ODEs.

Geometrical Study of Solutions to Systems of First Order ODEs
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— As with single ODEs, direction fields, drawn in phase space, are helpful in
determining the general behaviour of solutions to system of ODEs.

< This is particularly the case if we know the steady states so that we can include
them in the region in which we draw direction fields.
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Direction Fields

— As with single ODEs, direction fields, drawn in phase space, are helpful in
determining the general behaviour of solutions to system of ODEs.

< This is particularly the case if we know the steady states so that we can include
them in the region in which we draw direction fields.

dy;
dt
» Let us consider the autonomous ODE system = ( I’::l(}’hﬂ) )
dy 2(y1, y2)
dt
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dy.
dt

» Let us consider the autonomous ODE system = ( I’::l(}’hﬂ) ) If
dy 2(y1, y2)

dt
we wish to think of y»(t) as a function (or relation) of y;(t), then by the Chain
Rule we have
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them in the region in which we draw direction fields.
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dy.
dt

» Let us consider the autonomous ODE system = ( I’::l(}’hﬂ) ) If
dy 2(y1, y2)

dt
we wish to think of y»(t) as a function (or relation) of y;(t), then by the Chain
Rule we have
dy2 _

y2 =y2(01(t)) = o
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them in the region in which we draw direction fields.
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dy.
dt

» Let us consider the autonomous ODE system = ( I’::l(}’hﬂ) ) If
dy 2(y1, y2)

dt
we wish to think of y»(t) as a function (or relation) of y;(t), then by the Chain
Rule we have
dy2 _ dv2dyr

= t)) = =
y2 = y2(y1(t)) gt dy, dt
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< This is particularly the case if we know the steady states so that we can include
them in the region in which we draw direction fields.
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dy.
dt

» Let us consider the autonomous ODE system = ( I’::l(}’hﬂ) ) If
dy 2(y1, y2)

dt
we wish to think of y»(t) as a function (or relation) of y;(t), then by the Chain
Rule we have
L _dedn | dn _ dyp/dt

= t = = .
y2 = y2(y1(t)) gt dy, dt A dyjdt
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determining the general behaviour of solutions to system of ODEs.

< This is particularly the case if we know the steady states so that we can include
them in the region in which we draw direction fields.
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dy.
dt

» Let us consider the autonomous ODE system = ( I’::l(}’hﬂ) ) If
dy 2(y1, y2)

dt
we wish to think of y»(t) as a function (or relation) of y;(t), then by the Chain
Rule we have

d2 _dndn | dy_ dy/dt
dt dy; dt dy; dyl/dt'

y1 = y1(t) and y» = y»(t) then
dyo _dy/dt () _ vy Fa(n,y)
dyr  dyi/dt  yi(t)  yi Fi(yi,y2)

y2 = y2(y1(t)) =
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— As with single ODEs, direction fields, drawn in phase space, are helpful in
determining the general behaviour of solutions to system of ODEs.

< This is particularly the case if we know the steady states so that we can include
them in the region in which we draw direction fields.
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dy.
dt

» Let us consider the autonomous ODE system = ( I’::l(}’hﬂ) ) If
dy 2(y1, y2)

dt
we wish to think of y»(t) as a function (or relation) of y;(t), then by the Chain
Rule we have
L _dedn | dn _ dyp/dt
dt dy; dt dy1 dy;/dt '

y1 = y1(t) and y» = y»(t) then

dyo _dy/dt () _ vy Fa(n,y)

dy  dyi/dt  y{(t) yi Fily,y)’
(%, %) is tangent to the trajectory

traced out by (y1(t), y2(t)) in the phase plane. Ask if you are not sure why.

d  dvp
dt > dt

y2 = ya(y1(t))

< In particular, at each point t, the vector

(Techn/’ca//y, at each point t the position vector ( ) with origin at (0, 0), when shifted to the

point (y1, y2) in the phase plane is tangent to the curve traced out by (y1(t), yQ(t))). 98 /131
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< So if on a grid of (y1, y2) values we plot a little line segment

parallel to (Fi(y1,¥2), Fa(y1,y2)) at each of the grid points, the
overall picture should show how trajectories of solutions behave in

the phase plane.
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< So if on a grid of (y1, y2) values we plot a little line segment
parallel to (Fi(y1,¥2), Fa(y1,y2)) at each of the grid points, the
overall picture should show how trajectories of solutions behave in
the phase plane.

< Obviously, while straightforward, this would be tedious to do by
hand, so see Tutorial 4 for a link to a simple Matlab program
which does this automatically. You may use this program or a
slightly modified version of it which | will put up on the course
Moodle page.
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< So if on a grid of (y1, y2) values we plot a little line segment
parallel to (Fi(y1,¥2), Fa(y1,y2)) at each of the grid points, the
overall picture should show how trajectories of solutions behave in
the phase plane.

< Obviously, while straightforward, this would be tedious to do by
hand, so see Tutorial 4 for a link to a simple Matlab program
which does this automatically. You may use this program or a
slightly modified version of it which | will put up on the course
Moodle page.

< As for single ODEs, this is an easy way to get an idea of how
solutions to a system of ODEs behave, especially near steady
states, without solving the system of ODEs.
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< So if on a grid of (y1, y2) values we plot a little line segment
parallel to (Fi(y1,¥2), Fa(y1,y2)) at each of the grid points, the
overall picture should show how trajectories of solutions behave in
the phase plane.

< Obviously, while straightforward, this would be tedious to do by
hand, so see Tutorial 4 for a link to a simple Matlab program
which does this automatically. You may use this program or a
slightly modified version of it which | will put up on the course
Moodle page.

< As for single ODEs, this is an easy way to get an idea of how
solutions to a system of ODEs behave, especially near steady
states, without solving the system of ODEs.

> On the following page are some direction fields around steady states at (0, 0).
Try to guess the type and stability of the steady states.
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‘ How to Sketch Phase Portraits

< As we did for single ODEs, we can use calculus to help us sketch what typical
solutions look like (in the phase plane) without solving a system of ODEs.

»> | DEFINITION | In a system of n autonomous first order ODEs,
T 2 ore o m1etine | . .
i (¥), the j' nullcline is the geometric shape for which
dy;
or fi(y)=0.
™ i(¥)

101/131



Introduction
Phase Space/Portraits, Direction Fields, Steady States - Vocabu

. . " Classification of Steady States for Linear Systems of ODEs
Geometrical Study of Solutions to Systems of First Order ODEs Classification of Steady States for Nonlinear Systems of ODEs

‘ How to Sketch Phase Portraits

< As we did for single ODEs, we can use calculus to help us sketch what typical
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»> | DEFINITION | In a system of n autonomous first order ODEs,

ay =z th . . )
i f(¥), the j nullcline is the geometric shape for which
dy;

or fi(y)=0.
™ i(¥)

> So for systems of 2 ODEs, the nullclines are curves in the phase plane.
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‘ How to Sketch Phase Portraits

As we did for single ODEs, we can use calculus to help us sketch what typical
solutions look like (in the phase plane) without solving a system of ODEs.

DEFINITION | In a system of n autonomous first order ODEs,

ay =z th . . )
i f(¥), the j nullcline is the geometric shape for which
dy;

or fi(y)=0.
™ i(¥)

So for systems of 2 ODEs, the nullclines are curves in the phase plane.
Clearly the steady states are where nullclines intersect.
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»> | DEFINITION | In a system of n autonomous first order ODEs,

ay =z th . . )
i f(¥), the j nullcline is the geometric shape for which
dy;

or fi(y)=0.
™ i(¥)

So for systems of 2 ODEs, the nullclines are curves in the phase plane.
Clearly the steady states are where nullclines intersect.

vy

> Because of the topology of R2, nullclines typically split the plane into regions
where the behaviour of solutions is similar so that we can typically generalise
the local behaviour of solutions near to steady states to the global behaviour of
solutions. This is not typically true for systems of more than 2 ODEs.
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»> | DEFINITION | In a system of n autonomous first order ODEs,
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i f(¥), the j nullcline is the geometric shape for which
dy;

or fi(y)=0.
™ i(¥)

So for systems of 2 ODEs, the nullclines are curves in the phase plane.
Clearly the steady states are where nullclines intersect.

vy

> Because of the topology of R2, nullclines typically split the plane into regions
where the behaviour of solutions is similar so that we can typically generalise
the local behaviour of solutions near to steady states to the global behaviour of
solutions. This is not typically true for systems of more than 2 ODEs.

» Observe that in R? if dy1/dt = 0 then y; does not change with time so all
trajectories on that nullcline must be parallel to the y» axis (perpendicular to
the yi axis);
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‘ How to Sketch Phase Portraits

As we did for single ODEs, we can use calculus to help us sketch what typical
solutions look like (in the phase plane) without solving a system of ODEs.

DEFINITION | In a system of n autonomous first order ODEs,

ay =z th . . )
i f(¥), the j nullcline is the geometric shape for which
dy;

or fi(y)=0.
™ i(¥)

So for systems of 2 ODEs, the nullclines are curves in the phase plane.
Clearly the steady states are where nullclines intersect.

Because of the topology of R2, nullclines typically split the plane into regions
where the behaviour of solutions is similar so that we can typically generalise
the local behaviour of solutions near to steady states to the global behaviour of
solutions. This is not typically true for systems of more than 2 ODEs.

Observe that in R? if dy1/dt = 0 then y; does not change with time so all
trajectories on that nullcline must be parallel to the y» axis (perpendicular to
the y; axis); similarly, all trajectories on the nullcline dy,/dt = 0 must be
parallel to the y; axis (perpendicular to the y» axis).
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‘ How to Sketch Phase Portraits

As we did for single ODEs, we can use calculus to help us sketch what typical
solutions look like (in the phase plane) without solving a system of ODEs.

DEFINITION | In a system of n autonomous first order ODEs,

ay =z th . . )
i f(¥), the j nullcline is the geometric shape for which
dy;

or fi(y)=0.
™ i(¥)

So for systems of 2 ODEs, the nullclines are curves in the phase plane.
Clearly the steady states are where nullclines intersect.

Because of the topology of R2, nullclines typically split the plane into regions
where the behaviour of solutions is similar so that we can typically generalise
the local behaviour of solutions near to steady states to the global behaviour of
solutions. This is not typically true for systems of more than 2 ODEs.
Observe that in R? if dy1/dt = 0 then y; does not change with time so all
trajectories on that nullcline must be parallel to the y» axis (perpendicular to
the y; axis); similarly, all trajectories on the nullcline dy,/dt = 0 must be
parallel to the y; axis (perpendicular to the y» axis).

The following summary of how to sketch phase portraits is a slightly modified
version of what is in A Primer on Mathematical Models in Biology by
Segel and Edelstein-Keshet.
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‘ How to Sketch Phase Portraits - continued

Here is a systematic way of sketching trajectories in the phase plane for

) without solving the system of ODEs

dyy
a ) _ ( Fi(y1,y2)
dys F2(y1,y2)
dt
1. If possible, find the steady states by solving the system of algebraic equations
dy1/dt = Fi(y1,y2) =0, dy2/dt = Fa(y1,y2) = 0. Otherwise, go to step 2.
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‘ How to Sketch Phase Portraits - continued

Here is a systematic way of sketching trajectories in the phase plane for
dy1

dt

= ( Fi(y1,2) ) without solving the system of ODEs
dys F2(y1,y2)
dt

If possible, find the steady states by solving the system of algebraic equations
dy1/dt = Fi(y1,y2) =0, dy2/dt = Fa(y1,y2) = 0. Otherwise, go to step 2.
2. Plot the vertical nulicline(s), dy:1/dt = Fi(y1, y2) = 0 and put vertical
trajectories along it (them).

1.
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‘ How to Sketch Phase Portraits - continued

Here is a systematic way of sketching trajectories in the phase plane for

dyy
dt
= ( Fi(y1,2) ) without solving the system of ODEs
dys F2(y1,y2)
dt

1. If possible, find the steady states by solving the system of algebraic equations
dy1/dt = Fi(y1,y2) =0, dy2/dt = Fa(y1,y2) = 0. Otherwise, go to step 2.

2. Plot the vertical nulicline(s), dy:1/dt = Fi(y1, y2) = 0 and put vertical
trajectories along it (them).

3. Plot the horizontal nullcline(s), dy»/dt = Fa(y1,y2) = 0 and put horizontal

trajectories along it (them).
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‘ How to Sketch Phase Portraits - continued

Here is a systematic way of sketching trajectories in the phase plane for

dyy
dt
= ( Fi(y1,2) ) without solving the system of ODEs
dys F2(y1,y2)
dt

1. If possible, find the steady states by solving the system of algebraic equations
dy1/dt = Fi(y1,y2) =0, dy2/dt = Fa(y1,y2) = 0. Otherwise, go to step 2.

2. Plot the vertical nulicline(s), dy:1/dt = Fi(y1, y2) = 0 and put vertical
trajectories along it (them).

3. Plot the horizontal nullcline(s), dy»/dt = Fa(y1,y2) = 0 and put horizontal
trajectories along it (them).

4. ldentify the steady states - where the nullclines intersect. Note some of them
might NOT be biologically relevant for a given problem (negative populations,
for example).
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‘ How to Sketch Phase Portraits - continued

Here is a systematic way of sketching trajectories in the phase plane for

dyy
dt

= ( Fi(y1,2) ) without solving the system of ODEs
dys F2(y1,y2)

1.dt If possible, find the steady states by solving the system of algebraic equations
dy1/dt = Fi(y1,y2) =0, dy2/dt = Fa(y1,y2) = 0. Otherwise, go to step 2.

2. Plot the vertical nulicline(s), dy:1/dt = Fi(y1, y2) = 0 and put vertical
trajectories along it (them).

3. Plot the horizontal nullcline(s), dy»/dt = Fa(y1,y2) = 0 and put horizontal
trajectories along it (them).

4. ldentify the steady states - where the nullclines intersect. Note some of them
might NOT be biologically relevant for a given problem (negative populations,
for example).

5. Use the differential equations and select convenient points (y1, y2) [for example,
y1 or y2 = 0 or very large] to determine the sign of dy;/dt = F1(y1, y2) and
dyz/dt = Fa(y1, y2) in various regions. Recall that unless these derivatives have
discontinuities, one can assume that the signs of dy;/dt and dy»/dt change
only at the nullclines.

102/131



Introduction
Phase Space/Portraits, Direction Fields, Steady States - Vocabu

Classification of Steady States for Linear Systems of ODEs

Geometrical Study of Solutions to Systems of First Order ODEs Classification of Steady States for Nonlinear Systems of ODEs

‘ How to Sketch Phase Portraits - continued

Here is a systematic way of sketching trajectories in the phase plane for

dyy
dt

= ( Fi(y1,2) ) without solving the system of ODEs
dys F2(y1,y2)

1.dt If possible, find the steady states by solving the system of algebraic equations
dy1/dt = Fi(y1,y2) =0, dy2/dt = Fa(y1,y2) = 0. Otherwise, go to step 2.

2. Plot the vertical nulicline(s), dy:1/dt = Fi(y1, y2) = 0 and put vertical
trajectories along it (them).

3. Plot the horizontal nullcline(s), dy»/dt = Fa(y1,y2) = 0 and put horizontal
trajectories along it (them).

4. ldentify the steady states - where the nullclines intersect. Note some of them
might NOT be biologically relevant for a given problem (negative populations,
for example).

5. Use the differential equations and select convenient points (y1, y2) [for example,
y1 or y2 = 0 or very large] to determine the sign of dy;/dt = F1(y1, y2) and
dyz/dt = Fa(y1, y2) in various regions. Recall that unless these derivatives have
discontinuities, one can assume that the signs of dy;/dt and dy»/dt change
only at the nullclines.

Put left-pointing arrows where dy; /dt < 0, right-pointing arrows where
dy;/dt > 0, downward pointing arrows where dy,/dt < 0, and

upward-pointing arrows where dy»/dt > 0.
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How to Sketch Phase Portraits - continued

6. If not already done, put arrows along the axes y; = 0 and y» =0 to
indicate the direction of trajectories along them.
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How to Sketch Phase Portraits - continued

6. If not already done, put arrows along the axes y; = 0 and y» =0 to
indicate the direction of trajectories along them.

7. Determine the stability and type of the steady states (if possible) by
looking at the direction of the arrows etc. Sometimes this cannot
be done fully and the analysis using eigenvalues in the later
sub-section can be used.
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How to Sketch Phase Portraits - continued

6. If not already done, put arrows along the axes y; = 0 and y» =0 to
indicate the direction of trajectories along them.

7. Determine the stability and type of the steady states (if possible) by
looking at the direction of the arrows etc. Sometimes this cannot
be done fully and the analysis using eigenvalues in the later
sub-section can be used.

8. Combine all of the preceding information into a consistent picture,
recalling that trajectories can only intersect at steady state points.
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How to Sketch Phase Portraits - continued

6. If not already done, put arrows along the axes y; = 0 and y» =0 to
indicate the direction of trajectories along them.

7. Determine the stability and type of the steady states (if possible) by
looking at the direction of the arrows etc. Sometimes this cannot
be done fully and the analysis using eigenvalues in the later
sub-section can be used.

8. Combine all of the preceding information into a consistent picture,
recalling that trajectories can only intersect at steady state points.

We next give an example of how to construct a phase portrait (taken
largely from section 7.6.1 of A Primer on Mathematical Models in
Biology by Segel and Edelstein-Keshet).
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»> | EXAMPLE 23 |: A dimensionless model for macrophage cells m(t) removing

dead cells a(t) and killing other cells is given by the system:

Geometrical Study of Solutions to Systems of First Order ODEs

d d
—m:a(l—m)a—ém, —azm—nma—a.
dt dt

where a, §,7 > 0 are constants. Sketch a phase portrait for this system:
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d d
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where a, §,7 > 0 are constants. Sketch a phase portrait for this system:

> | ANSWER | We first try to find the steady states by solving

om

1—m)a—oém=0 =0
a(l—m)a—3dm = a ad—m)

104 /131



Introduction
Phase Space/Portraits, Direction Fields, Steady States - Vocabu

Classification of Steady States for Linear Systems of ODEs
Classification of Steady States for Nonlinear Systems of ODEs

»> | EXAMPLE 23 |: A dimensionless model for macrophage cells m(t) removing

dead cells a(t) and killing other cells is given by the system:
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d d
—m:a(l—m)a—ém, —azm—nma—a.
dt dt

where a, §,7 > 0 are constants. Sketch a phase portrait for this system:

> | ANSWER | We first try to find the steady states by solving

om
a(l-ma—m=0 = a=—"7"—
a(l —m)
and
m
m—mma—a=0 = a=-——,
14+ nm

so, as a bonus, we also have equations for the two nullclines.
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where a, §,7 > 0 are constants. Sketch a phase portrait for this system:

> | ANSWER | We first try to find the steady states by solving

om
a(l-ma—m=0 = a=—"7"—
a(l —m)
and
m
m—mma—a=0 = a=-——,
14+ nm

so, as a bonus, we also have equations for the two nullclines. Setting both
expressions for a equal to each other, we get

om . m
a(l—m)  14nm
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»> | EXAMPLE 23 |: A dimensionless model for macrophage cells m(t) removing

dead cells a(t) and killing other cells is given by the system:

Geometrical Study of Solutions to Systems of First Order ODEs

d d
m:oz(l—m)a—ém7 d—i:m—nma—a.

dt

where a, §,7 > 0 are constants. Sketch a phase portrait for this system:

> | ANSWER | We first try to find the steady states by solving

om
a(l-ma—m=0 = a=—"7"—
a(l —m)
and
m
m—mma—a=0 = a=-——,
14+ nm

so, as a bonus, we also have equations for the two nullclines. Setting both
expressions for a equal to each other, we get

om . m
a(l—m)  14nm

So clearly is a steady state.
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» So if m # 0 we can divide both sides by it and get the equation
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» So if m # 0 we can divide both sides by it and get the equation

5 1
a(l—m)  14nm

= d+omm=a(l-m) =
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» So if m # 0 we can divide both sides by it and get the equation

5 1
a(l—m)  14nm

= d+omm=a(l-m) =

a—20

4 =a—-§ = =
nm-+aoam=« m n+a
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» So if m # 0 we can divide both sides by it and get the equation

5 1
a(l—m)  14nm

= d+omm=a(l-m) =

snm + 5§ = a9
m am=«« — m= —-
" on+ «

We can now use any of the equations for a on the preceding page. For example,
using the second equation, we have

m
a=-—>
14+7nm
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» So if m # 0 we can divide both sides by it and get the equation

5 1
a(l—m)  14nm

= d+omm=a(l-m) =

_a—=9
T+

mm+am=a—-§ = m

We can now use any of the equations for a on the preceding page. For example,
using the second equation, we have

ao_m  _ (a—0)/(6n+ ) _ (o —8)/(5n + a)
L+nm 14 (na —nd)/(6n + a) (5 + a + na — M) /(61 + a)
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» So if m # 0 we can divide both sides by it and get the equation

5 1
a(l—m)  14nm

= d+omm=a(l-m) =

_a—=9
T+

mm+am=a—-§ = m

We can now use any of the equations for a on the preceding page. For example,
using the second equation, we have

ao_m  _ (a—0)/(on + o) _ (= 8)/(6n + )
L4nm 1+ (no —nd)/(n + o) (5 + a + na — M) /(61 + a)
. a—4§
S a(n+1)
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» So if m # 0 we can divide both sides by it and get the equation

5 1
a(l—m)  14nm

= d+omm=a(l-m) =

_a—=9
T+

We can now use any of the equations for a on the preceding page. For example,
using the second equation, we have

mm+am=a—-§ = m

ao_m  _ (a—0)/(on + o) _ (= 8)/(6n + ) ~
L+nm 14 (na —nd)/(6n + a) (5 + a + na — M) /(61 + a)
gm0
Ca(n+1)

» We can now generate a graph of the nullclines and steady states using
a=1,6 =0.2,n = 1. (Note values outside of the first quadrant make no sense

for this problem but | include them to help determine the type of steady state
at the origin).
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> We will next put vertical arrows across the red curve dm/dt = 0 and horizontal
arrows across the blue curve da/dt = 0.
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> We will next put vertical arrows across the red curve dm/dt = 0 and horizontal
arrows across the blue curve da/dt = 0.

> We also calculate dm/dt = a(1 — m)a — dm and da/dt = m — nma — a in
various regions (done in Matlab) and insert appropriately-scaled vectors parallel
to the (dm/dt, da/dt) vectors and emanating from those points.

Sample point | (dm/dt, da/dt)
(-0.5,—0.5) | (—0.65,—0.25)
(0.5, -0.5) (—0.35,1.25)
(0.4,0.2) (0.04,0.12)
(0.9,0.8) (—0.1,-0.62)
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» From this we see some trajectories going towards the origin and some moving
away, so it is likely an saddle point (hence unstable).
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» From this we see some trajectories going towards the origin and some moving
away, so it is likely an saddle point (hence unstable).

P On the other hand, trajectories seem to move towards the steady state in the
first quadrant, so it appears asymptotically stable and the pattern of approach
suggest it is likely a node (although there are other possibilities).
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» From this we see some trajectories going towards the origin and some moving
away, so it is likely an saddle point (hence unstable).

P On the other hand, trajectories seem to move towards the steady state in the
first quadrant, so it appears asymptotically stable and the pattern of approach
suggest it is likely a node (although there are other possibilities). The
classification of the steady states can be confirmed by an eigenvalue analysis as
described later.
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» This direction field plot confirms our conclusions on the preceding page.
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Classification of Steady State for Linear Systems of ODEs

< Recall from earlier that the constant coefficient linear system of
ODEs ¥ ' = Ay has only one steady state:
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Classification of Steady State for Linear Systems of ODEs

< Recall from earlier that the constant coefficient linear system of
ODEs ¥ ' = Ay has only one steady state: the zero vector.
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Classification of Steady State for Linear Systems of ODEs

< Recall from earlier that the constant coefficient linear system of
ODEs ¥ ' = Ay has only one steady state: the zero vector.

< We can easily classify that steady state based on the eigenvalues of
the matrix A.
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Classification of Steady State for Linear Systems of ODEs

< Recall from earlier that the constant coefficient linear system of
ODEs ¥ ' = Ay has only one steady state: the zero vector.

< We can easily classify that steady state based on the eigenvalues of
the matrix A.

—> These classifications are easy to understand if the form of solutions
to the ODE system with different types of eigenvalues are recalled
(See the first section of these lecture notes).
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Classification of Steady State for Linear Systems of ODEs

< Recall from earlier that the constant coefficient linear system of
ODEs ¥ ' = Ay has only one steady state: the zero vector.

< We can easily classify that steady state based on the eigenvalues of
the matrix A.

—> These classifications are easy to understand if the form of solutions
to the ODE system with different types of eigenvalues are recalled
(See the first section of these lecture notes).

» NOTE there are tests which do not require the calculation of the
eigenvalues and just require looking at certain combinations of the
entries of the matrix A (I won't cover those in any detail but you
can find them summarised in many standard ODE or Mathematical
Biology books, including several on the course’s reading list).
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Classification of Steady State for Linear Systems of ODEs

< Recall from earlier that the constant coefficient linear system of
ODEs ¥ ' = Ay has only one steady state: the zero vector.

< We can easily classify that steady state based on the eigenvalues of
the matrix A.

—> These classifications are easy to understand if the form of solutions
to the ODE system with different types of eigenvalues are recalled
(See the first section of these lecture notes).

» NOTE there are tests which do not require the calculation of the
eigenvalues and just require looking at certain combinations of the
entries of the matrix A (I won't cover those in any detail but you
can find them summarised in many standard ODE or Mathematical
Biology books, including several on the course’s reading list).

> We will discuss this classification based on the eigenvalue types of
A, looking at 5 cases and then summarising at the end.
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— First just a few general observations regarding the
EIGENVECTORS of A, given that the solution of the ODE
system is typically of the form y = AvyeMt + Bihet2t.
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— First just a few general observations regarding the
EIGENVECTORS of A, given that the solution of the ODE
system is typically of the form y = AvyeMt + Bihet2t.

» |f initial conditions are such that either A or B is zero, the solution
vector will just be a scalar multiple of one of the eigenvectors,
hence its trajectory in the phase plane will just be the line through
the origin determined by that eigenvector.
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— First just a few general observations regarding the
EIGENVECTORS of A, given that the solution of the ODE
system is typically of the form y = AvyeMt + Bihet2t.

» |f initial conditions are such that either A or B is zero, the solution
vector will just be a scalar multiple of one of the eigenvectors,
hence its trajectory in the phase plane will just be the line through
the origin determined by that eigenvector.

» Thus solution trajectories that start out on the line determined by
one of the eigenvectors just follows that line as t — oo, going away
from the origin if the corresponding eigenvalue is positive (unstable)
or towards the origin if the corresponding eigenvalue is negative
(asymptotically stable) .
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— First just a few general observations regarding the
EIGENVECTORS of A, given that the solution of the ODE
system is typically of the form y = AvyeMt + Bihet2t.

» |f initial conditions are such that either A or B is zero, the solution
vector will just be a scalar multiple of one of the eigenvectors,
hence its trajectory in the phase plane will just be the line through
the origin determined by that eigenvector.

» Thus solution trajectories that start out on the line determined by
one of the eigenvectors just follows that line as t — oo, going away
from the origin if the corresponding eigenvalue is positive (unstable)
or towards the origin if the corresponding eigenvalue is negative
(asymptotically stable) .

» Solution trajectories which do not start off on an eigenvector are
generally curved and tend towards the eigenvector associated with
the largest eigenvalue as t increases.
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CASE 1: A1, \; real, unequal, and of SAME sign

<+ In that case, the form of the solution is y(t) = AvieMt + Bise2!
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CASE 1: A1, \; real, unequal, and of SAME sign

<+ In that case, the form of the solution is y(t) = AvieMt + Bise2!

» It is then easy to see that if both eigenvalues are negative, the
solution vector y must approach 0, the steady state, as t — oo
hence the steady state is asymptotically stable.
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CASE 1: A1, \; real, unequal, and of SAME sign

<+ In that case, the form of the solution is y(t) = AvieMt + Bise2!

» It is then easy to see that if both eigenvalues are negative, the
solution vector y must approach 0, the steady state, as t — oo
hence the steady state is asymptotically stable.

» |t is also clear that if both eigenvalues are positive the solution
vector diverges away from 0, the steady state, as t — oo hence the
steady state is unstable.
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CASE 1: A1, \; real, unequal, and of SAME sign

<+ In that case, the form of the solution is y(t) = AvieMt + Bise2!

v

It is then easy to see that if both eigenvalues are negative, the
solution vector y must approach 0, the steady state, as t — oo
hence the steady state is asymptotically stable.

» |t is also clear that if both eigenvalues are positive the solution
vector diverges away from 0, the steady state, as t — oo hence the
steady state is unstable.

< This type of steady state is called a Node.

=Y
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CASE 2: A1, \; real, unequal, and of DIFFERENT signs

— Without loss of generality, assume A; < 0 < As.
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CASE 2: A1, \; real, unequal, and of DIFFERENT signs

— Without loss of generality, assume A; < 0 < Az. The form of the
solution is y(t) = AvieMt + Biyet
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CASE 2: A1, \; real, unequal, and of DIFFERENT signs

— Without loss of generality, assume A; < 0 < Az. The form of the
solution is y(t) = AvieMt + Biyet
> It is then easy to see that only if a solution starts out with B =0
(so along the line determined by the eigenvector ¥; will solutions
approach the (0, 0) steady state as t — oo; otherwise, solutions

approach oo (tangent to the line determined by the eigenvector ).
Hence the steady state is unstable.
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CASE 2: A1, \; real, unequal, and of DIFFERENT signs

— Without loss of generality, assume A; < 0 < Az. The form of the
solution is y(t) = AvieMt + Biyet

> It is then easy to see that only if a solution starts out with B =0
(so along the line determined by the eigenvector ¥; will solutions
approach the (0, 0) steady state as t — oo; otherwise, solutions
approach oo (tangent to the line determined by the eigenvector ).
Hence the steady state is unstable.

< This type of steady state is called a Saddle Point.
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CASE 3: A\; = ) real, equal eigenvalues

< There are two main cases:
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CASE 3: A\; = ) real, equal eigenvalues

< There are two main cases:
I. There are two linearly independent eigenvectors v; and v»: In this case,
the solution is of the form
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CASE 3: A\; = ) real, equal eigenvalues

< There are two main cases:
I. There are two linearly independent eigenvectors v; and v»: In this case,
the solution is of the form y(t) = Avje’!t + Bihertt.
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CASE 3: A\; = ) real, equal eigenvalues

< There are two main cases:
I. There are two linearly independent eigenvectors v; and v»: In this case,

the solution is of the form y(t) = Avje !t + Bihe*t. NOTE the ratio
y1/y2 is now independent of t (the e*1! terms cancel out) but is
dependent on the eigenvectors and the arbitrary constants A and B.
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CASE 3: A\; = ) real, equal eigenvalues

<+ There are two main cases:

I. There are two linearly independent eigenvectors v; and v»: In this case,
the solution is of the form y(t) = Avje !t + Bihe*t. NOTE the ratio
y1/y2 is now independent of t (the e*1! terms cancel out) but is
dependent on the eigenvectors and the arbitrary constants A and B.
Hence trajectories are lines through the origin (steady state) and that
steady state is known as a Proper Node (sometimes “star point”).
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CASE 3: A\; = ) real, equal eigenvalues

< There are two main cases:

I. There are two linearly independent eigenvectors v; and v»: In this case,
the solution is of the form y(t) = Avje !t + Bihe*t. NOTE the ratio
y1/y2 is now independent of t (the e*1! terms cancel out) but is
dependent on the eigenvectors and the arbitrary constants A and B.
Hence trajectories are lines through the origin (steady state) and that
steady state is known as a Proper Node (sometimes “star point”).
Clearly it is asymptotically stable if A; = A2 < 0 and is unstable if
A1 = A2 > 0.
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CASE 3: A\; = ) real, equal eigenvalues

< There are two main cases:

There are two linearly independent eigenvectors v; and v,: In this case,
the solution is of the form y(t) = Avje !t + Bihe*t. NOTE the ratio
y1/y2 is now independent of t (the e*1! terms cancel out) but is
dependent on the eigenvectors and the arbitrary constants A and B.
Hence trajectories are lines through the origin (steady state) and that
steady state is known as a Proper Node (sometimes “star point”).
Clearly it is asymptotically stable if A; = A2 < 0 and is unstable if

A1 = A2 > 0.

There is one linearly independent eigenvector V; and a generalised
eigenvector 17:
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CASE 3: A\; = ) real, equal eigenvalues

< There are two main cases:

There are two linearly independent eigenvectors v; and v,: In this case,
the solution is of the form y(t) = Avje !t + Bihe*t. NOTE the ratio
y1/y2 is now independent of t (the e*1! terms cancel out) but is
dependent on the eigenvectors and the arbitrary constants A and B.
Hence trajectories are lines through the origin (steady state) and that
steady state is known as a Proper Node (sometimes “star point”).
Clearly it is asymptotically stable if A; = A2 < 0 and is unstable if

A1 = A2 > 0.

There is one linearly independent eigenvector V; and a generalised
eigenvector 77: In this case the solution is of the form

y(t) = AvieMt + B(vitet 4 fjett).
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CASE 3: A\; = ) real, equal eigenvalues

< There are two main cases:

I. There are two linearly independent eigenvectors v; and v»: In this case,
the solution is of the form y(t) = Avje !t + Bihe*t. NOTE the ratio
y1/y2 is now independent of t (the e*1! terms cancel out) but is
dependent on the eigenvectors and the arbitrary constants A and B.
Hence trajectories are lines through the origin (steady state) and that
steady state is known as a Proper Node (sometimes “star point”).
Clearly it is asymptotically stable if A; = A2 < 0 and is unstable if
A1 = A2 > 0.

Il. There is one linearly independent eigenvector V; and a generalised
eigenvector 77: In this case the solution is of the form
y(t) = AvieMt + B(vitet 4 fjett).
In this case, if A1 > 0 the solutions clearly diverges away from 0 as
t — oo and are therefore unstable.
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CASE 3: A\; = ) real, equal eigenvalues

< There are two main cases:

There are two linearly independent eigenvectors v; and v,: In this case,
the solution is of the form y(t) = Avje !t + Bihe*t. NOTE the ratio
y1/y2 is now independent of t (the e*1! terms cancel out) but is
dependent on the eigenvectors and the arbitrary constants A and B.
Hence trajectories are lines through the origin (steady state) and that
steady state is known as a Proper Node (sometimes “star point”).
Clearly it is asymptotically stable if A; = A2 < 0 and is unstable if

A1 = A2 > 0.

There is one linearly independent eigenvector V; and a generalised
eigenvector 77: In this case the solution is of the form

y(t) = AvieMt + B(vitet 4 fjett).

In this case, if A1 > 0 the solutions clearly diverges away from 0 as

t — oo and are therefore unstable. If \; < 0 - say \; = —r where r > 0,
then by L’Hépital’s rule

lim te™" =
t—oo
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CASE 3: A\; = ) real, equal eigenvalues

< There are two main cases:

There are two linearly independent eigenvectors v; and v,: In this case,
the solution is of the form y(t) = Avje !t + Bihe*t. NOTE the ratio
y1/y2 is now independent of t (the e*1! terms cancel out) but is
dependent on the eigenvectors and the arbitrary constants A and B.
Hence trajectories are lines through the origin (steady state) and that
steady state is known as a Proper Node (sometimes “star point”).
Clearly it is asymptotically stable if A; = A2 < 0 and is unstable if

A1 = A2 > 0.

There is one linearly independent eigenvector V; and a generalised
eigenvector 77: In this case the solution is of the form

y(t) = AvieMt + B(vitet 4 fjett).

In this case, if A1 > 0 the solutions clearly diverges away from 0 as

t — oo and are therefore unstable. If \; < 0 - say \; = —r where r > 0,
then by L’Hépital’s rule

d
. _ ot g (1) 1
lim te”™" = lim — = |im ddti = lim = 0.
t—o0 t—oo et t—o00 E(e’f) t—oo re't
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CASE 3: A\; = ) real, equal eigenvalues

< There are two main cases:

There are two linearly independent eigenvectors v; and v,: In this case,
the solution is of the form y(t) = Avje !t + Bihe*t. NOTE the ratio
y1/y2 is now independent of t (the e*1! terms cancel out) but is
dependent on the eigenvectors and the arbitrary constants A and B.
Hence trajectories are lines through the origin (steady state) and that
steady state is known as a Proper Node (sometimes “star point”).
Clearly it is asymptotically stable if A; = A2 < 0 and is unstable if

A1 = A2 > 0.

There is one linearly independent eigenvector V; and a generalised
eigenvector 77: In this case the solution is of the form

y(t) = AvieMt + B(vitet 4 fjett).

In this case, if A1 > 0 the solutions clearly diverges away from 0 as

t — oo and are therefore unstable. If \; < 0 - say \; = —r where r > 0,
then by L’Hépital’s rule

d
. _ ot 10 )
lim te”™" = lim — = |im ddti = lim = 0.
t—»00 t—oo et t— o0 E(e’f) t—oo ret

Thus solutions approach 0 as t — oo, therefore the steady state is

asymptotically stable.
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CASE 4: A\;,\» = a* ib complex conjugate pair with nonzero real and imaginary parts

< From the earlier examples, the solutions tend to be the product of
an exponential term (with exponent at) and a combination of
sinusoidal terms.
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CASE 4: A\;,\» = a* ib complex conjugate pair with nonzero real and imaginary parts

< From the earlier examples, the solutions tend to be the product of
an exponential term (with exponent at) and a combination of
sinusoidal terms.

> It is then easy to see that solutions will have oscillations as time
increases, which will either dampen to the zero steady state
solution (if a < 0) or be continually amplified (if a > 0). Hence in
the first case the steady state is asymptotically stable and in the
second case it is unstable.
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CASE 4: A\;,\» = a* ib complex conjugate pair with nonzero real and imaginary parts

< From the earlier examples, the solutions tend to be the product of
an exponential term (with exponent at) and a combination of
sinusoidal terms.

> It is then easy to see that solutions will have oscillations as time
increases, which will either dampen to the zero steady state
solution (if a < 0) or be continually amplified (if a > 0). Hence in
the first case the steady state is asymptotically stable and in the
second case it is unstable.

< This type of steady state is called a Spiral Point (or focus).
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CASE 5: A1, Ay = £ib complex conjugate pure imaginary

< This is as in the previous case but now without the exponential
term, so just a sinusoidal solution.
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CASE 5: A1, Ay = £ib complex conjugate pure imaginary

< This is as in the previous case but now without the exponential
term, so just a sinusoidal solution.

> |t is then easy to see that solutions will be periodic and will be
represented in the phase plane by closed curves. The steady state is
Stable but not Asymptotically Stable since solutions do not
approach it over time (but don't diverge from it either).
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CASE 5: A1, Ay = £ib complex conjugate pure imaginary

< This is as in the previous case but now without the exponential
term, so just a sinusoidal solution.

> |t is then easy to see that solutions will be periodic and will be
represented in the phase plane by closed curves. The steady state is
Stable but not Asymptotically Stable since solutions do not
approach it over time (but don't diverge from it either).

< This type of steady state is called a Centre.
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d
SUMMARY: Classification of Steady States for d—': = Ay, Ay»» a

nonsingular matrix with eigenvalues A\; and A;:

Eigenvalue Type of Steady State Stability

A1 > >0 Node Unstable

A< A<O0 Node Asymptotically stable

A1 <0< M Saddle Point Unstable

A1=X>0 Proper or Improper node Unstable

A=A <0 Proper or Improper node Asymptotically stable

AL, do=a=xib Spiral Point/Focus a < 0 = Asymptotically
stable, a > 0 = Unstable

A1, A = %ib Centre Stable
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» For linear constant coefficient matrix systems of more than 2 ODEs,
a similar (albeit more complicated) analysis can be carried out as
was done here.
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» For linear constant coefficient matrix systems of more than 2 ODEs,
a similar (albeit more complicated) analysis can be carried out as
was done here.

» The cases in higher dimensions are essentially just combinations of
the different cases seen here. For example, for systems of two
equations one could have a complex conjugate pair of solutions
meaning that solutions along a certain plane may spiral to/from the
origin while, for example if the other eigenvalue is a negative
number other solutions could tend towards the origin along a line
transverse to the plane in which solutions spiral.
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» For linear constant coefficient matrix systems of more than 2 ODEs,
a similar (albeit more complicated) analysis can be carried out as
was done here.

» The cases in higher dimensions are essentially just combinations of
the different cases seen here. For example, for systems of two
equations one could have a complex conjugate pair of solutions
meaning that solutions along a certain plane may spiral to/from the
origin while, for example if the other eigenvalue is a negative
number other solutions could tend towards the origin along a line
transverse to the plane in which solutions spiral.

» One nice thing that the topology of R? allows is that local
behaviour (near to steady states) in the phase plane can be
generalised to global behaviour and one can get a good idea of how
solutions behave everywhere in the plane. This is not the case in
higher dimensions.
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< The good news is we have done all of the required hard work in the previous
sections.
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< The good news is we have done all of the required hard work in the previous
sections.

dy -
< If the nonlinear autonomous system of ODEs d—i[ = F(¥) has steady state jp so
that Ij_(j/‘o) =0, then a Taylor series expansion about ¥y (assuming F is at least
C?), |gnor|ng second and higher order terms, is F(y) ~0+F (¥o)(¥ — Yo)

where F’(yo) is the Jacobian matrix of F evaluated at the steady state yp.
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< The good news is we have done all of the required hard work in the previous
sections.

< If the nonlinear autonomous system of ODEs % = F(¥) has steady state j; so
that Ij_(j/‘o) =0, then a Taylor series expansion about ¥y (assuming F is at least
C?), |gnor|ng second and higher order terms, is F(y) ~0+F (¥o)(¥ — Yo)
where F’(yo) |s the Jacobian matrix of F evaluated at the steady state yp.
Noting that ? = %, then the differential equation becomes
(approximately)

dy dy—-w) z,.\v- -
L - P _F _ .
o o (Yo)(¥ — ¥0)
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< The good news is we have done all of the required hard work in the previous
sections.

dy -
< If the nonlinear autonomous system of ODEs d—i[ = F(¥) has steady state jp so
that Ij_(j/‘o) =0, then a Taylor series expansion about ¥y (assuming F is at least
C?), |gnor|ng second and higher order terms, is F(y) ~0+F (¥o)(¥ — Yo)
where F’(yo) |s the Jacobian matrix of F evaluated at the steady state yp.

Noting that ? = %, then the differential equation becomes
(approximately)

dy dy—-w) z,.\v- -
L - P _F _ .
o o (Yo)(¥ — ¥0)

> Crucially, this is a linear constant coefficient system of ODEs with the Jacobian
of F evaluated at the steady state being the coefficient matrix.
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< The good news is we have done all of the required hard work in the previous
sections.

dy -
< If the nonlinear autonomous system of ODEs d—i[ = F(¥) has steady state jp so
that Ij_(j/‘o) =0, then a Taylor series expansion about ¥y (assuming F is at least
C?), |gnor|ng second and higher order terms, is F(y) ~0+F (¥o)(¥ — Yo)
where F’(yo) |s the Jacobian matrix of F evaluated at the steady state yp.

Noting that ? = %, then the differential equation becomes
(approximately)

dy _ d(7 — o)

_ B G50)7 — 7).
gt p” (Yo)(¥ — ¥0)

> Crucially, this is a linear constant coefficient system of ODEs with the Jacobian
of F evaluated at the steady state being the coefficient matrix. It can be shown
dy .
that the steady states of the nonlinear d—{ = F(¥) behave just like the steady

states of this linearisation (with one exception), so we typically only need
examine the eigenvalues of the matrix F/();) at each steady state of

dy .
d—{ = F(¥) to determine the nature of that steady state.
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» The only case in which the earlier classification between linear systems and the
nonlinear system may differ is highlighted in yellow in the following table,
reproduced from earlier this lecture.
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» The only case in which the earlier classification between linear systems and the
nonlinear system may differ is highlighted in yellow in the following table,
reproduced from earlier this lecture.

d N -
SUMMARY: Classification of Steady States for d—{ = F(y), where F'(y) is a

2 X 2 Jacobian matrix evaluated at the steady state yp which is nonsingular and has
eigenvalues A1 and \j:
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» The only case in which the earlier classification between linear systems and the
nonlinear system may differ is highlighted in yellow in the following table,
reproduced from earlier this lecture.

d N -
SUMMARY: Classification of Steady States for d—{ = F(y), where F'(y) is a

2 x 2 Jacobian matrix evaluated at the steady state yj which is nonsingular and has
eigenvalues A1 and \j:

Eigenvalue Type of Steady State Stability

A1 > >0 Node Unstable

A1 <A2<0 Node Asymptotically stable
A1 <0< A Saddle Point Unstable

Al=X>0 Proper or Improper node Unstable

A1 =X <0 Proper or Improper node Asymptotically stable
Al,\2=axib Spiral Point/Focus a < 0 = Asymptotically

stable, a > 0 = Unstable

A1, A2 = £ib Centre or Spiral Point Asymptotically stable
Stable, or Unstable

120 /131



Introduction

Phase Space/Portraits, Direction Fields, Steady States - Vocabu
Classification of Steady States for Linear Systems of ODEs
Classification of Steady States for Nonlinear Systems of ODEs

Geometrical Study of Solutions to Systems of First Order ODEs

» The only case in which the earlier classification between linear systems and the
nonlinear system may differ is highlighted in yellow in the following table,
reproduced from earlier this lecture.

d N -
SUMMARY: Classification of Steady States for d—{ = F(y), where F'(y) is a

2 x 2 Jacobian matrix evaluated at the steady state yj which is nonsingular and has
eigenvalues A1 and \j:

Eigenvalue Type of Steady State Stability

A1 > >0 Node Unstable

A1 <A2<0 Node Asymptotically stable
A1 <0< A Saddle Point Unstable

Al=X>0 Proper or Improper node Unstable

A1 =X <0 Proper or Improper node Asymptotically stable
Al,\2=axib Spiral Point/Focus a < 0 = Asymptotically

stable, a > 0 = Unstable

A1, A2 = £ib Centre or Spiral Point Asymptotically stable
Stable, or Unstable

In the last, ambiguous case, check the nonlinear terms or use a direction field etc. to
confirm the type and stability of the steady state.
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> | EXAMPLE 24 |: Returning to the macrophage model of EXAMPLE 23, use
eigenvalues to classify the two steady state solutions (0,0) and

a—9§ a—4§ .
(m, m) in the model

d d.
—m:a(lfm)afém, —a:mfnmafa.
dt dt

where @« = 1,8 = 0.2, =1 (as in the graphs produced in EXAMPLE 23).

121/131



Introduction
Phase Space/Portraits, Direction Fields, Steady States - Vocabu

Classification of Steady States for Linear Systems of ODEs

Geometrical Study of Solutions to Systems of First Order ODEs Classification of Steady States for Nonlinear Systems of ODEs

> | EXAMPLE 24 |: Returning to the macrophage model of EXAMPLE 23, use
eigenvalues to classify the two steady state solutions (0,0) and

a—9§ a—4§ .
(m, m) in the model

d d.
—m:a(lfm)afém, —a:mfnmafa.
dt dt

where @« = 1,8 = 0.2, =1 (as in the graphs produced in EXAMPLE 23).

» | ANSWER | As a function of m and a, the Jacobian matrix is

121/131



Introduction
Phase Space/Portraits, Direction Fields, Steady States - Vocabu

Classification of Steady States for Linear Systems of ODEs

Geometrical Study of Solutions to Systems of First Order ODEs Classification of Steady States for Nonlinear Systems of ODEs

> | EXAMPLE 24 |: Returning to the macrophage model of EXAMPLE 23, use
eigenvalues to classify the two steady state solutions (0,0) and

_5 _5 .
(60;;?’ m) in the model
dm da

I:a(lfm)afém, G- monma-a

where @« = 1,8 = 0.2, =1 (as in the graphs produced in EXAMPLE 23).

» | ANSWER | As a function of m and a, the Jacobian matrix is
< 2l —m)a—dm] Zla(l — m)a—dm] )
om, Baa =

B M — nma — a] 55lm —nma — a]
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dm da
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where @« = 1,8 = 0.2, =1 (as in the graphs produced in EXAMPLE 23).

» | ANSWER | As a function of m and a, the Jacobian matrix is
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|o—
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> | EXAMPLE 24 |: Returning to the macrophage model of EXAMPLE 23, use

eigenvalues to classify the two steady state solutions (0,0) and
_5 _5 .
(50;]?, %) in the model

d d.
—m:a(lfm)afém, —a:mfnmafa.

dt dt
where @« = 1,8 = 0.2, =1 (as in the graphs produced in EXAMPLE 23).

» | ANSWER | As a function of m and a, the Jacobian matrix is

%[a(l — m)a—dm] %
< 88%[m—nma—a] K

|o—

Q|

a(l—m)a—dm] ): ( —aa—46 a(l—m) )

[m—nma — a] l1-na —mqm-—1

a

So evaluated at the steady state (0,0) the Jacobian is
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> | EXAMPLE 24 |: Returning to the macrophage model of EXAMPLE 23, use
eigenvalues to classify the two steady state solutions (0,0) and

a—9§ a—4§ .
(m, m) in the model

d d.
—m:a(lfm)afém, —a:mfnmafa.
dt dt

where @« = 1,8 = 0.2, =1 (as in the graphs produced in EXAMPLE 23).

» | ANSWER | As a function of m and a, the Jacobian matrix is
< %[a(l—m)a—dm] % a(l—m)a—dm] ) _ ( —aa—46 a(l—m) )

Q—

30 [m —nma — 4] [m — nma — &] N 1-na —nm-—1

Q|

a

So evaluated at the steady state (0,0) the Jacobian is

(7 5) = (71 4)
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> | EXAMPLE 24 |: Returning to the macrophage model of EXAMPLE 23, use

eigenvalues to classify the two steady state solutions (0,0) and
_5 _5 .
(50;]?, %) in the model

d d.
—m:a(lfm)afém, —a:mfnmafa.
dt dt

where @« = 1,8 = 0.2, =1 (as in the graphs produced in EXAMPLE 23).

» | ANSWER | As a function of m and a, the Jacobian matrix is
< dmlal = m)a—oml  Fla(l—m)a—dm] ) _ ( —aa—3§ a(l—m) )

B M — nma — a] 55lm —nma — a] l-na —mm-1

So evaluated at the steady state (0,0) the Jacobian is
-5 «a _ -02 1
1 -1 o 1 -1 /-

> Using Matlab's eig() function on this matrix, we see that the eigenvalues are
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> | EXAMPLE 24 |: Returning to the macrophage model of EXAMPLE 23, use
eigenvalues to classify the two steady state solutions (0,0) and
-5 _5 .
(50;]?, %) in the model

d d.
—m:a(lfm)afém, —a:mfnmafa.
dt dt

where @« = 1,8 = 0.2, =1 (as in the graphs produced in EXAMPLE 23).

» | ANSWER | As a function of m and a, the Jacobian matrix is
< %[a(l—m)a—dm] % a(l—m)a—dm] ) _ ( —aa—46 a(l—m) )

30 [m —nma — 4] [m — nma — &] N 1-na —nm-—1
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So evaluated at the steady state (0,0) the Jacobian is
-5 «a _ -02 1
1 -1 o 1 -1 /-

> Using Matlab's eig() function on this matrix, we see that the eigenvalues are
—1.67703 and 0.47703, so we conclude that (0,0) is an (unstable) saddle
point.
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» Similarly at the steady state

a—0 a—90
m+a’ a(n+1)

~ (0.66667, 0.4),

the Jacobian matrix is
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» Similarly at the steady state

a—0 a—90
m+a’ a(n+1)

~ (0.66667, 0.4),

the Jacobian matrix is

—0.6 0.33333
0.6 —1.66667
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» Similarly at the steady state

a—0 a—90
m+a’ a(n+1)

~ (0.66667, 0.4),

the Jacobian matrix is

—0.6 0.33333
0.6 —1.66667

> Using Matlab's eig() function on this matrix, we see
that the eigenvalues are —0.43731 and —1.82935,
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» Similarly at the steady state

a—0 a—90
m+a’ a(n+1)

) ~ (0.66667, 0.4),

the Jacobian matrix is

—0.6 0.33333
0.6 —1.66667 |

> Using Matlab's eig() function on this matrix, we see
that the eigenvalues are —0.43731 and —1.82935, so
we conclude that (0.66667,0.4) is an asymptotically
stable node.

122 /131



Appendix

APPENDIX A
Here is an image summarising one way to categorise the steady states of a linear
constant coefficient 2 x 2 system of ODEs without explicitly computing eigenvalues:

q A=0

dx _ p=A+D
at TAX*BY g-ap-BC
g—¥=CX+Dy A=p*-4q
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Appendix

‘ APPENDIX B - Inhomogeneous Systems X ' = AX + g(t), Anxn

< There are several techniques for solving inhomogeneous
systems; we will discuss two:
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< There are several techniques for solving inhomogeneous
systems; we will discuss two:

1. Diagonalisation (inhomgeneous systems for which the
homogeneous part, X ' = AX, has n linearly independent
solutions, where A,x, has n linearly independent
eigenvectors).
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‘ APPENDIX B - Inhomogeneous Systems X ' = AX + g(t), Anxn

< There are several techniques for solving inhomogeneous
systems; we will discuss two:

1. Diagonalisation (inhomgeneous systems for which the
homogeneous part, X ' = AX, has n linearly independent
solutions, where A,x, has n linearly independent
eigenvectors).

2. The Method of Undetermined Coefficients for systems.
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Appendix

1. Diagonalisation Approach to Solving X ' = AX + g(t) ‘

> First - review how to solve a first order linear ODE using an integrating factor
from Lecture 2 since it will be needed in what follows.
<+ Assuming A can be diagonalised so that P~'AP = D is a diagonal matrix (see
the Supplen}entary Lecture on Eigenvalues/Eigenvectors for details), then
A = PDP—*.
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X' = PDPTX+E(t) =
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Appendix

1. Diagonalisation Approach to Solving X ' = AX + g(t) ‘

> First - review how to solve a first order linear ODE using an integrating factor
from Lecture 2 since it will be needed in what follows.
<+ Assuming A can be diagonalised so that P~'AP = D is a diagonal matrix (see
the Supplementary Lecture on Eigenvalues/Eigenvectors for details), then
A= PDP~1.
» So X' = AX + g(t) can be written as

" = PDPTX+g(t)=
"= DPT'Z+PTE(t)=

XL Xl

Pfl
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> First - review how to solve a first order linear ODE using an integrating factor
from Lecture 2 since it will be needed in what follows.
<+ Assuming A can be diagonalised so that P~'AP = D is a diagonal matrix (see
the Supplementary Lecture on Eigenvalues/Eigenvectors for details), then
A= PDP~1.
» So X' = AX + g(t) can be written as

X' = PDPTX+E(t) =
PTIX’ = DPT'X+PTlE(t) =
(P7%)" = D(P7'X)4 P71g(t) since P is a constant matrix.
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First - review how to solve a first order linear ODE using an integrating factor
from Lecture 2 since it will be needed in what follows.

Assuming A can be diagonalised so that P~YAP = D is a diagonal matrix (see
the Supplementary Lecture on Eigenvalues/Eigenvectors for details), then

A= PDP~1.

So X/ = AX + g(t) can be written as

X' = PDPTX+E(t) =
PTIX’ = DPT'X+PTlE(t) =
(P7%)" = D(P7'X)4 P71g(t) since P is a constant matrix.

Because of the diagonal nature of D, each row of the last vector equation is
simply an uncoupled first order linear ODE (of the form y’ = d;y + h(t)) for
the unknown y; = (P71X);.
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(P7%)" = D(P7'X)4 P71g(t) since P is a constant matrix.

Because of the diagonal nature of D, each row of the last vector equation is
simply an uncoupled first order linear ODE (of the form y’ = d;y + h(t)) for
the unknown y; = (P71X);. So we simply solve the equations separately to
obtain P~1X then multiply on the left by P to obtain X(t).
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1. Diagonalisation Approach to Solving X ' = AX + g(t) ‘

First - review how to solve a first order linear ODE using an integrating factor
from Lecture 2 since it will be needed in what follows.

Assuming A can be diagonalised so that P~YAP = D is a diagonal matrix (see
the Supplementary Lecture on Eigenvalues/Eigenvectors for details), then

A= PDP~1.

So X/ = AX + g(t) can be written as

X' = PDPTX+E(t) =
PTIX’ = DPT'X+PTlE(t) =
(P7%)" = D(P7'X)4 P71g(t) since P is a constant matrix.

Because of the diagonal nature of D, each row of the last vector equation is
simply an uncoupled first order linear ODE (of the form y’ = d;y + h(t)) for
the unknown y; = (P71X);. So we simply solve the equations separately to
obtain P~1X then multiply on the left by P to obtain X(t).

NOTE recall that when using this diagonalisation approach with homogeneous
linear systems of ODEs, we do not need to know P~1. However, we DO need
to know P~ when solving the inhomogeneous system % ' = AR + g(t) - in
order to compute P~1g(t).
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Appendix

< | EXAMPLE 15 | Returning to EXAMPLE 2/9, we now solve the full

inhomogeneous system :

M eI ME

§e -1 ]
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—3e + Cie3 + 3Ge
X(t) =
1
let 14 Ge3’ — 20

— We now use the initial conditions X(0) = { i } to get

G +3G = 3/2
G —26 = 3)2

= G =0, C1=%.
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1
let 14 Ge3’ — 20

— We now use the initial conditions X(0) = { i } to get

G +36 = 32
-2 = 3/2
= G=0 G= % So the solution to the initial value problem is
t 3 1t
- 5€ 5e3
X(t) = 2 1 T 2 . |+ as expected.
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2. Method of Undetermined Coefficients Approach to Solving X ' = AX + g(t)

(If pressed for time, you can ignore this is you have not seen the Method of Undetermined Coefficients before for

solving constant coefficient linear 2nd order inhomogeneous ODEs)
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(If pressed for time, you can ignore this is you have not seen the Method of Undetermined Coefficients before for

solving constant coefficient linear 2nd order inhomogeneous ODEs)

< There isn't much new here if you have seen the Method of Undetermined
Coefficients for second order constant coefficient linear ODEs. Basically, we can
find a particular solution to X / = AX + g(t) in the special case where A is
constant and g(t) contains sines, cosines, polynomials, exponential functions, or
sums/products of these.
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constant and g(t) contains sines, cosines, polynomials, exponential functions, or
sums/products of these.

< Again assume a solution X,(t) of the form of the various entries of g(t) with
undetermined coefficients, substitute this assumption for X,(t) into
X/ = AX 4+ g(t), and find out the values of those coefficients.
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< Again assume a solution X,(t) of the form of the various entries of g(t) with
undetermined coefficients, substitute this assumption for X,(t) into
X/ = AX 4+ g(t), and find out the values of those coefficients.

< Once we have a particular solution X,(t) to X/ = AX + g(t) and also know the
general solution of the HOMOGENEOUS system X ' = AX (the complementary
function) X-(t), then the GENERAL SOLUTION of X/ = AX + g(t) is simply

Xp(t) + Xe(2)-
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find a particular solution to X / = AX + g(t) in the special case where A is
constant and g(t) contains sines, cosines, polynomials, exponential functions, or
sums/products of these.

< Again assume a solution X,(t) of the form of the various entries of g(t) with
undetermined coefficients, substitute this assumption for X,(t) into
X/ = AX 4+ g(t), and find out the values of those coefficients.

< Once we have a particular solution X,(t) to X/ = AX + g(t) and also know the
general solution of the HOMOGENEOUS system X ' = AX (the complementary
function) X-(t), then the GENERAL SOLUTION of X/ = AX + g(t) is simply

Xp(t) + Xe(2)-

» NOTE that this is identical to how we use the Method of Undetermined
coefficients to solve linear single ODEs such as ax" + bx" 4+ cx = g(t).
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Equating the coefficients of like terms on either side of the equations (and
simplifying), we conclude that

a—3c = -2
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4b—3d = 3
~26+3d = -3 = [b=0]|and|d=-1]
et
So X,(t) = let2, 1 and the general solution to X / = AX + g(t)is
2
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—2a = 1 = a:—% and c:%‘A Also,
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~26+3d = -3 = [b=0]|and|d=-1]
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< | FINAL NOTE:| When solving X ' = AX + g(t) using
the Method of Undetermined Coefficients, there is only
one case in which the approach differs slightly from that
used in the solving of equations like
ax" + bx' + cx = g(t).
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< | FINAL NOTE:| When solving X ' = AX + g(t) using
the Method of Undetermined Coefficients, there is only
one case in which the approach differs slightly from that
used in the solving of equations like
ax" + bx' + cx = g(t).

~~ If the initial assumed form of the particular solution
X,(t) = 3e*t, where ) is an eigenvalue of A

, then instead of adjusting the assumption to
X,(t) = t3e*, also include lower order terms in the

assumption: | X,(t) = tde + be*t | where 3 and b are
constant vectors whose entries are to be determined by
substitution into the ODE system X ' = AX + g(t).
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