
Introduction - Mathematics for the Life Sciences
Di↵erential Equations

Direction Fields - a qualitative look at solutions
Numerical Solutions of First Order Initial Value Problems

Appendix

MATH1134 - Lecture 2

Mr. Tony Mann, Dr. Erwin George, Department of
Mathematical Sciences, University of Greenwich

February 6, 2017

1 / 75



Introduction - Mathematics for the Life Sciences
Di↵erential Equations

Direction Fields - a qualitative look at solutions
Numerical Solutions of First Order Initial Value Problems

Appendix

Introduction - Mathematics for the Life Sciences

Di↵erential Equations
Solving First Order ODEs
Autonomous First Order ODEs - a geometric look

Direction Fields - a qualitative look at solutions

Numerical Solutions of First Order Initial Value Problems

Appendix

2 / 75



Introduction - Mathematics for the Life Sciences
Di↵erential Equations

Direction Fields - a qualitative look at solutions
Numerical Solutions of First Order Initial Value Problems

Appendix

TIPS

1. Invest time learning the language of Mathematics (with all of its
special cases and exceptions and conventions).

2. Review constantly.

3. Do assignments, tutorials, etc. Practise, practise, practise. Read
textbook/supplementary notes. Ideally read the
textbook/supplementary notes material on a topic before the
relevant lecture. You will have to do significant work outside of the
classroom to master the material.

4. Attend and engage with lectures and tutorials. This represents the
most e�cient way to learn the material. Come prepared and ask
questions if you do not understand something.

5. Speak to me as soon as you feel you may be falling behind.

6. In summary: KEEP UP. This will be a very fast-paced class and
falling behind is very unwise. Mathematics is very hierarchical and
you generally progress only by first knowing well what went before.
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Mathematics for the Life Sciences - Introduction

,! PRACTICAL INFORMATION  -

I Lecturers: Erwin George (⇡ weeks 2 - 8) and Tony Mann (⇡ week 1 and last 3
weeks)  (E.George@gre.ac.uk and A.Mann@gre.ac.uk).

I No exam. A single coursework  see course handbook for release and due
dates.

I The main lecture notes will typically be provided in three formats (Tony will

likely only use 2 formats):
1. A printable version with parts missing. You are expected to print this out

and read it BEFORE the lecture and to try to do the examples. Bring
this printout with you to the lecture in order to complete the notes.

2. A complete printable version will be made available (some time) after
lectures.

3. A complete in-class version which attempts to mimic the way the lecture

was delivered in class. I recommend using this version if you miss a

lecture to get caught up on that lecture.
I See also the Course Handbook at the top of the class Moodle page for a

summary of key information relevant to the course.
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7! Provisional Summary of Course Content:

1. General introduction to applications of mathematics in the life sciences  1
WEEK;

2. Review of first order single ordinary di↵erential equations (ODEs) - (including
exact solutions, geometric/qualitative approaches, numerical methods)  1
WEEK;

3. Modelling with ODEs and single species population dynamics  2 WEEKS;

4. Systems of first order ODEs (including numerical methods and qualitative
approaches)  2 WEEKS;

5. Population dynamics of interacting species  2 WEEKS.

6. Infectious disease  1 WEEK;

7. Population genetics and evolution, and the use of Game Theory in the life
sciences  3 WEEKS.

 This simple introduction will give you the tools to explore other applications of
mathematics to life sciences, such as biochemical (including enzyme) kinetics,
and I will point some of these out to you as we proceed:
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Suggested Reading List

I Mathematics of Life: Unlocking the Secrets of Existence by Ian Stewart
(Profile).

I Essential Mathematical Biology by Nicholas Britton (Springer)

I Mathematical Biology: I. An Introduction by J.D. Murray (Springer)

I Mathematical Models in Biology by Leah Edelstein-Keshet (SIAM)

I A Primer on Mathematical Models in Biology by Lee Segel and Leah
Edelstein-Keshet (SIAM)

I Super Cooperators: Evolution, Altruism and Human Behaviour or Why We
Need Each Other to Succeed by Martin Nowak and Roger Highfield
(Canongate)

I When maths doesn’t work: what we learn from the Prisoners’ Dilemma by
Tony Mann - Lecture transcript and video available at
http://www.gresham.ac.uk/lectures-andevents/when-mathsdoesnt-work-what-
welearn-from-theprisoners-dilemma;
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Solving First Order ODEs
Autonomous First Order ODEs - a geometric look

INTRODUCTION

I Many (but not all!) of the mathematical models of life science applications we
will encounter in this course will be Ordinary Di↵erential Equations (ODEs) or
systems of ODEs, typically with initial conditions, so that we have an Initial
Value Problems (IVPs).

I Therefore, before beginning to build and study these models, we will review
relevant aspects of ODEs.

I NOTE there are other key mathematical tools for modelling life science
problems - such as stochastic di↵erential equations, partial di↵erential equations
and boundary value problems, etc. - which we will not cover in this course.

I As always, NOTATION and LANGUAGE will be very important in what
follows; pay close attention to it and ensure that you learn and understand
the notation and language used!
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Introduction continued

,! A mathematical model of a real-world problem often takes the form of a
di↵erential equation (rates of change, slopes, deflections  derivatives of a
function).

,! Di↵erential Equation (DE) = an equation that contains an unknown function
and some of its derivatives. The objective is typically to find out what that
unknown function is. Obviously, this is much trickier than just solving an
algebraic equation for a single variable or a finite set of variables. However, we
are also often just interested in the qualitative behaviour of the solution(s) -
such as its (their) asymptotic behaviour as the independent variable time !1.

,! Di↵erential equations in which the unknown function is a function of only one
independent variable are called Ordinary Di↵erential Equations (ODEs),
whereas di↵erential equations involving an unknown multivariable function are
called Partial Di↵erential Equations (PDEs).
We will essentially only study ODEs in this course  you can choose to study
PDEs in the course Numerical Solution of PDEs which runs concurrently.

,! These ODE models may also consist of n di↵erent ODEs involving n unknown
functions and their derivatives.
We will also study systems of ODEs in this course.
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algebraic equation for a single variable or a finite set of variables. However, we
are also often just interested in the qualitative behaviour of the solution(s) -
such as its (their) asymptotic behaviour as the independent variable time !1.

,! Di↵erential equations in which the unknown function is a function of only one
independent variable are called Ordinary Di↵erential Equations (ODEs),
whereas di↵erential equations involving an unknown multivariable function are
called Partial Di↵erential Equations (PDEs).
We will essentially only study ODEs in this course  you can choose to study
PDEs in the course Numerical Solution of PDEs which runs concurrently.

,! These ODE models may also consist of n di↵erent ODEs involving n unknown
functions and their derivatives.

We will also study systems of ODEs in this course.
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 Example
d2y

dx2
+

dy

dx
= ex

 a second order di↵erential equation since the

highest order derivative involved is 2. What is the independent variable in this
equation? x .

 Example y 0 = f (x , y) represents a general first order di↵erential equation.
f (x , y) a function of the two independent variables x and y , e.g.
f (x , y) = x2y + sin(x � y). What is the independent variable in this DE? x .

 
sin(t)

dx

dt
� 4

dy

dt
= cos(t)

5
dx

dt
+ e2t

dy

dt
= 5

is an example of system of 2 first order ODEs. The independent variable is t
and the unknown functions (dependent variables) are x(t) and y(t).
(Warning - the terminology used in some books can be a bit confusing,
referring to this as a “second order system” since it contains two equations. I
prefer the more explicit description “a system of 2 first order equations”).

9 / 75



Introduction - Mathematics for the Life Sciences
Di↵erential Equations

Direction Fields - a qualitative look at solutions
Numerical Solutions of First Order Initial Value Problems

Appendix

Solving First Order ODEs
Autonomous First Order ODEs - a geometric look

 Example
d2y

dx2
+

dy

dx
= ex  a second order di↵erential equation since the

highest order derivative involved is 2.

What is the independent variable in this
equation? x .

 Example y 0 = f (x , y) represents a general first order di↵erential equation.
f (x , y) a function of the two independent variables x and y , e.g.
f (x , y) = x2y + sin(x � y). What is the independent variable in this DE? x .

 
sin(t)

dx

dt
� 4

dy

dt
= cos(t)

5
dx

dt
+ e2t

dy

dt
= 5

is an example of system of 2 first order ODEs. The independent variable is t
and the unknown functions (dependent variables) are x(t) and y(t).
(Warning - the terminology used in some books can be a bit confusing,
referring to this as a “second order system” since it contains two equations. I
prefer the more explicit description “a system of 2 first order equations”).

9 / 75



Introduction - Mathematics for the Life Sciences
Di↵erential Equations

Direction Fields - a qualitative look at solutions
Numerical Solutions of First Order Initial Value Problems

Appendix

Solving First Order ODEs
Autonomous First Order ODEs - a geometric look

 Example
d2y

dx2
+

dy

dx
= ex  a second order di↵erential equation since the

highest order derivative involved is 2. What is the independent variable in this
equation?

x .

 Example y 0 = f (x , y) represents a general first order di↵erential equation.
f (x , y) a function of the two independent variables x and y , e.g.
f (x , y) = x2y + sin(x � y). What is the independent variable in this DE? x .

 
sin(t)

dx

dt
� 4

dy

dt
= cos(t)

5
dx

dt
+ e2t

dy

dt
= 5

is an example of system of 2 first order ODEs. The independent variable is t
and the unknown functions (dependent variables) are x(t) and y(t).
(Warning - the terminology used in some books can be a bit confusing,
referring to this as a “second order system” since it contains two equations. I
prefer the more explicit description “a system of 2 first order equations”).

9 / 75



Introduction - Mathematics for the Life Sciences
Di↵erential Equations

Direction Fields - a qualitative look at solutions
Numerical Solutions of First Order Initial Value Problems

Appendix

Solving First Order ODEs
Autonomous First Order ODEs - a geometric look

 Example
d2y

dx2
+

dy

dx
= ex  a second order di↵erential equation since the

highest order derivative involved is 2. What is the independent variable in this
equation? x .

 Example y 0 = f (x , y) represents a general first order di↵erential equation.
f (x , y) a function of the two independent variables x and y , e.g.
f (x , y) = x2y + sin(x � y). What is the independent variable in this DE? x .

 
sin(t)

dx

dt
� 4

dy

dt
= cos(t)

5
dx

dt
+ e2t

dy

dt
= 5

is an example of system of 2 first order ODEs. The independent variable is t
and the unknown functions (dependent variables) are x(t) and y(t).
(Warning - the terminology used in some books can be a bit confusing,
referring to this as a “second order system” since it contains two equations. I
prefer the more explicit description “a system of 2 first order equations”).

9 / 75



Introduction - Mathematics for the Life Sciences
Di↵erential Equations

Direction Fields - a qualitative look at solutions
Numerical Solutions of First Order Initial Value Problems

Appendix

Solving First Order ODEs
Autonomous First Order ODEs - a geometric look

 Example
d2y

dx2
+

dy

dx
= ex  a second order di↵erential equation since the

highest order derivative involved is 2. What is the independent variable in this
equation? x .

 Example y 0 = f (x , y) represents a general first order di↵erential equation.

f (x , y) a function of the two independent variables x and y , e.g.
f (x , y) = x2y + sin(x � y). What is the independent variable in this DE? x .

 
sin(t)

dx

dt
� 4

dy

dt
= cos(t)

5
dx

dt
+ e2t

dy

dt
= 5

is an example of system of 2 first order ODEs. The independent variable is t
and the unknown functions (dependent variables) are x(t) and y(t).
(Warning - the terminology used in some books can be a bit confusing,
referring to this as a “second order system” since it contains two equations. I
prefer the more explicit description “a system of 2 first order equations”).

9 / 75



Introduction - Mathematics for the Life Sciences
Di↵erential Equations

Direction Fields - a qualitative look at solutions
Numerical Solutions of First Order Initial Value Problems

Appendix

Solving First Order ODEs
Autonomous First Order ODEs - a geometric look

 Example
d2y

dx2
+

dy

dx
= ex  a second order di↵erential equation since the

highest order derivative involved is 2. What is the independent variable in this
equation? x .

 Example y 0 = f (x , y) represents a general first order di↵erential equation.
f (x , y) a function of the two independent variables x and y , e.g.
f (x , y) = x2y + sin(x � y).

What is the independent variable in this DE? x .

 
sin(t)

dx

dt
� 4

dy

dt
= cos(t)

5
dx

dt
+ e2t

dy

dt
= 5

is an example of system of 2 first order ODEs. The independent variable is t
and the unknown functions (dependent variables) are x(t) and y(t).
(Warning - the terminology used in some books can be a bit confusing,
referring to this as a “second order system” since it contains two equations. I
prefer the more explicit description “a system of 2 first order equations”).

9 / 75



Introduction - Mathematics for the Life Sciences
Di↵erential Equations

Direction Fields - a qualitative look at solutions
Numerical Solutions of First Order Initial Value Problems

Appendix

Solving First Order ODEs
Autonomous First Order ODEs - a geometric look

 Example
d2y

dx2
+

dy

dx
= ex  a second order di↵erential equation since the

highest order derivative involved is 2. What is the independent variable in this
equation? x .

 Example y 0 = f (x , y) represents a general first order di↵erential equation.
f (x , y) a function of the two independent variables x and y , e.g.
f (x , y) = x2y + sin(x � y). What is the independent variable in this DE?

x .

 
sin(t)

dx

dt
� 4

dy

dt
= cos(t)

5
dx

dt
+ e2t

dy

dt
= 5

is an example of system of 2 first order ODEs. The independent variable is t
and the unknown functions (dependent variables) are x(t) and y(t).
(Warning - the terminology used in some books can be a bit confusing,
referring to this as a “second order system” since it contains two equations. I
prefer the more explicit description “a system of 2 first order equations”).

9 / 75



Introduction - Mathematics for the Life Sciences
Di↵erential Equations

Direction Fields - a qualitative look at solutions
Numerical Solutions of First Order Initial Value Problems

Appendix

Solving First Order ODEs
Autonomous First Order ODEs - a geometric look

 Example
d2y

dx2
+

dy

dx
= ex  a second order di↵erential equation since the

highest order derivative involved is 2. What is the independent variable in this
equation? x .

 Example y 0 = f (x , y) represents a general first order di↵erential equation.
f (x , y) a function of the two independent variables x and y , e.g.
f (x , y) = x2y + sin(x � y). What is the independent variable in this DE? x .

 
sin(t)

dx

dt
� 4

dy

dt
= cos(t)

5
dx

dt
+ e2t

dy

dt
= 5

is an example of system of 2 first order ODEs. The independent variable is t
and the unknown functions (dependent variables) are x(t) and y(t).
(Warning - the terminology used in some books can be a bit confusing,
referring to this as a “second order system” since it contains two equations. I
prefer the more explicit description “a system of 2 first order equations”).

9 / 75



Introduction - Mathematics for the Life Sciences
Di↵erential Equations

Direction Fields - a qualitative look at solutions
Numerical Solutions of First Order Initial Value Problems

Appendix

Solving First Order ODEs
Autonomous First Order ODEs - a geometric look

 Example
d2y

dx2
+

dy

dx
= ex  a second order di↵erential equation since the

highest order derivative involved is 2. What is the independent variable in this
equation? x .

 Example y 0 = f (x , y) represents a general first order di↵erential equation.
f (x , y) a function of the two independent variables x and y , e.g.
f (x , y) = x2y + sin(x � y). What is the independent variable in this DE? x .

 
sin(t)

dx

dt
� 4

dy

dt
= cos(t)

5
dx

dt
+ e2t

dy

dt
= 5

is an example of system of 2 first order ODEs. The independent variable is

t
and the unknown functions (dependent variables) are x(t) and y(t).
(Warning - the terminology used in some books can be a bit confusing,
referring to this as a “second order system” since it contains two equations. I
prefer the more explicit description “a system of 2 first order equations”).

9 / 75



Introduction - Mathematics for the Life Sciences
Di↵erential Equations

Direction Fields - a qualitative look at solutions
Numerical Solutions of First Order Initial Value Problems

Appendix

Solving First Order ODEs
Autonomous First Order ODEs - a geometric look

 Example
d2y

dx2
+

dy

dx
= ex  a second order di↵erential equation since the

highest order derivative involved is 2. What is the independent variable in this
equation? x .

 Example y 0 = f (x , y) represents a general first order di↵erential equation.
f (x , y) a function of the two independent variables x and y , e.g.
f (x , y) = x2y + sin(x � y). What is the independent variable in this DE? x .

 
sin(t)

dx

dt
� 4

dy

dt
= cos(t)

5
dx

dt
+ e2t

dy

dt
= 5

is an example of system of 2 first order ODEs. The independent variable is t
and the unknown functions (dependent variables) are

x(t) and y(t).
(Warning - the terminology used in some books can be a bit confusing,
referring to this as a “second order system” since it contains two equations. I
prefer the more explicit description “a system of 2 first order equations”).

9 / 75



Introduction - Mathematics for the Life Sciences
Di↵erential Equations

Direction Fields - a qualitative look at solutions
Numerical Solutions of First Order Initial Value Problems

Appendix

Solving First Order ODEs
Autonomous First Order ODEs - a geometric look

 Example
d2y

dx2
+

dy

dx
= ex  a second order di↵erential equation since the

highest order derivative involved is 2. What is the independent variable in this
equation? x .

 Example y 0 = f (x , y) represents a general first order di↵erential equation.
f (x , y) a function of the two independent variables x and y , e.g.
f (x , y) = x2y + sin(x � y). What is the independent variable in this DE? x .

 
sin(t)

dx

dt
� 4

dy

dt
= cos(t)

5
dx

dt
+ e2t

dy

dt
= 5

is an example of system of 2 first order ODEs. The independent variable is t
and the unknown functions (dependent variables) are x(t) and y(t).

(Warning - the terminology used in some books can be a bit confusing,
referring to this as a “second order system” since it contains two equations. I
prefer the more explicit description “a system of 2 first order equations”).

9 / 75



Introduction - Mathematics for the Life Sciences
Di↵erential Equations

Direction Fields - a qualitative look at solutions
Numerical Solutions of First Order Initial Value Problems

Appendix

Solving First Order ODEs
Autonomous First Order ODEs - a geometric look

 Example
d2y

dx2
+

dy

dx
= ex  a second order di↵erential equation since the

highest order derivative involved is 2. What is the independent variable in this
equation? x .

 Example y 0 = f (x , y) represents a general first order di↵erential equation.
f (x , y) a function of the two independent variables x and y , e.g.
f (x , y) = x2y + sin(x � y). What is the independent variable in this DE? x .

 
sin(t)

dx

dt
� 4

dy

dt
= cos(t)

5
dx

dt
+ e2t

dy

dt
= 5

is an example of system of 2 first order ODEs. The independent variable is t
and the unknown functions (dependent variables) are x(t) and y(t).
(Warning - the terminology used in some books can be a bit confusing,
referring to this as a “second order system” since it contains two equations. I
prefer the more explicit description “a system of 2 first order equations”).

9 / 75



Introduction - Mathematics for the Life Sciences
Di↵erential Equations

Direction Fields - a qualitative look at solutions
Numerical Solutions of First Order Initial Value Problems

Appendix

Solving First Order ODEs
Autonomous First Order ODEs - a geometric look

,! Solving a first order DE  integration (hence one constant of integration) in
the solution (function).

,! Solving a second order DE  integration twice (hence two constants of
integration in the solution function) . . . etc.

7! The solution which contains the constants of integration usually describes all
possible solutions and is called the General Solution (GS) of the DE.

7! Usually, the scenario the ODE models has extra pieces of information – called
Initial Conditions (or boundary conditions) – which can be used to determine
the constant of integration and hence get a unique (function) solution to the
DE, called a Particular Solution (PS). Clearly, the number of initial conditions
must match the order of the DE (= the number of constants of integration that
“solving” the equation produces).

I Key Definition Initial Value Problem (IVP) = a DE with one or more

initial conditions.

We will focus on Initial Value Problems and not Boundary Value Problems
(where boundary conditions instead of initial conditions are specificied) in this
course.

7! Example of initial condition for dx
dt = g(x , t): x = b at t = a, also written

x(a) = b (where a and b are constants).
I I will often just use the generic terms ODE or system of ODEs to also

include the possibility of initial conditions being present - so to include IVPs
or systems of IVPs.
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must match the order of the DE (= the number of constants of integration that
“solving” the equation produces).

I Key Definition Initial Value Problem (IVP) = a DE with one or more

initial conditions.

We will focus on Initial Value Problems and not Boundary Value Problems
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course.

7! Example of initial condition for dx
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I I will often just use the generic terms ODE or system of ODEs to also

include the possibility of initial conditions being present - so to include IVPs
or systems of IVPs.
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Solving First Order ODEs
Autonomous First Order ODEs - a geometric look

3 Types of DEs We’ll Learn to Solve Now

1. Integration in disguise equations  these will be di↵erential
equations of ANY order (i.e., where the highest order derivative of
the unknown function can be first or second or third or fourth or
fifth, . . .), in which solving the di↵erential equation just involves
possibly rearranging the equation then integrating both sides one or
more times - using the Fundamental Theorem of Calculus.

2. Separable first order equations  several of the key equations we
encounter will fall into this category.

3. Linear first order equations.

7! It is important that you learn how to recognise which of the
three categories a given di↵erential equation falls into so that
you will know exactly how to solve it (or whether you can solve
it)!
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Integration in Disguise Di↵erential Equations

,! The first class of ODEs we will solve are those which can be
written in the form

dy

dx
= f (x) or

d2y

dx2
= f (x) or

d3y

dx3
= f (x), . . . , etc.

i.e. equations which can be written in the form

Some derivative of the unknown function =

a function of the independent variable only (including CONSTANTS).

,! By the Fundamental Theorem of Calculus, such equations can
be solved by integrating the right hand side function (n times for a
DE of order n) with respect to the independent variable.

 For example dy
dx = f (x) )

R dy
dx dx =

R

f (x) dx OR
=

R

( ) .
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• EXAMPLE 1 Find the general solution of

d3y

dx3
� sin(x) = 4x3.

? ANSWER First rewrite as

d3y

dx3
= sin(x) + 4x3.

Now integrate three times to get the answer:

d2y

dx2
= � cos(x) + x4 + C1

) dy

dx
= � sin(x) +

1

5
x5 + C1x + C2

) ( ) = cos( ) +
1

30
6 +

1

2
2 + 2 + 3.

CHECK YOUR ANSWER!!!
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,! EXAMPLE 2 Find the general solution for ey
⇣
5� dz

dy

⌘
= 6� 10 cosh y .

7! ANSWER What is the independent variable? y .

I This is equivalent to 5ey � ey dz
dy = 6� 10 cosh y or

5ey � 6 + 10 cosh y = ey dz
dy .

I So dz
dy = 5� 6e�y + 10e�y cosh y .

I But 10e�y cosh y = 5e�y (ey + e�y ) = 5 + 5e�2y .
I So dz

dy = 5� 6e�y + 5 + 5e�2y = 10� 6e�y + 5e�2y ,
I and

z(y) =

Z

�

10� 6e�y + 5e�2y
�

dy

= 10y + 6e�y � 5

2
e�2y + C .

7! What is the particular solution if z(0) = 3?
Substitute this into the general solution to get 3 = 6� 5

2 + C ) C = � 1
2 and

the particular solution is z(y) = 10y + 6e�y � 5
2 e

�2y � 1
2 .
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,! EXAMPLE 3 - Introductory Modelling (simple mechanics): for this, you need to
know that the derivative of displacement/position with respect to time is
velocity, and the derivative of velocity with respect to time is acceleration:
The acceleration of a bus along a straight road is given by a(t) = 3t. We start
observing the bus (t = 0) when it is 50m along the road, and 1 s after we begin
observing it, its velocity is 5m/s. Write this as an ODE with “initial”
conditions, and find a particular solution for the position of the bus along the
road at time t.

7! ANSWER Letting x(t) be the position of the bus t seconds after we begin
observing it, then

x 00(t) = 3t, x(0) = 50, x 0(1) = 5.

• First, the general solution: integrating both sides gives x 0(t) = 3
2 t

2 + C

and doing this again gives x(t) = 1
2 t

3 + Ct + K .

• Now the particular solution: x 0(1) = 5) C = 7
2 .

x(0) = 50) K = 50.

So

x(t) =
1

2
t3 +

7

2
t + 50.
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Separable Equations

,! Definition: A separable equation (for the function y(x)) is a first order DE
which can be written in the form

dy

dx
= f (x)g(y). (1)

i.e., the DE is separable if dy
dx can be written as the product (or quotient) of a

function of x alone and a function of y alone.

,! To solve Equation (1), rearrange it into the form

1

g(y)
dy = f (x) dx

and then integrate both sides, i.e.
Z

1

g(y)
dy =

Z
f (x) dx . (2)

,! NOTE after integration, only ONE constant of integration is needed in
Equation (2), and it is not always feasible to solve the resulting equation for y
as function of x .
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Autonomous First Order ODEs - a geometric look

REMINDER: dy
dx = f (x)g(y) 

R 1
g(y) dy =

R
f (x) dx

,! For those who are worried that we are integrating with
respect to di↵erent variables on both sides of the
equation, here is why it works (from the substitution rule
. . . this proof is also available in most calculus textbooks):

Z

1

g(y)
dy =

Z

1

g(y(x))

dy

dx
dx

=

Z

1

g(y(x))
f (x)g(y(x))dx =

Z

f (x)dx .

I NOTE this method of solution is sometimes referred to
as separation of variables.
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Autonomous First Order ODEs - a geometric look

,! EXAMPLE 4 Solve du
dt = eu+3t .

7! ANSWER It can be re-written as du
dt = eue3t so that

e�u du = e3t dt and
R
e�u du =

R
e3t dt

So �e�u = 1
3 e

3t + C

So e�u = K � 1
3 e

3t ) � u = ln
�
K � 1

3 e
3t
�
)

( ) = � ln
⇣

� 1
3

3
⌘
.

 Of course, it isn’t always possible or easy to solve for the dependent variable (u
in this case) in terms of the independent variable (t).

 In this case, we can solve for u explicitly so we can check directly that the
solution satisfies the DE:
By the chain rule,

du

dt
=

1

K � 1
3 e

3t
e3t . (3)

NOTE that e�u = 1
eu = K � 1

3 e
3t ) eu = 1

K� 1
3 e

3t .

So, returning to Equation 3, we have du
dt = eue3t = eu+3t , so that our solution

does satisfy the DE.
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Autonomous First Order ODEs - a geometric look

,! EXAMPLE 5 Solve y 0 = y cos x
1+2y2

, y(0) = 1.

7! ANSWER Rewrite (in Leibnitz notation) as dy
dx = y cos x

1+2y2
, so that

1 + 2y2

y
dy = cos x dx , provided y 6= 0. (4)

• In fact, y = 0 is a solution to the DE (’though it doesn’t also satisfy the
initial condition), so we may assume y 6= 0 and look for other solutions.

• Integrating both sides of Equation 4, we get

ln |y |+ y2 = sin x + C . (5)

(see visualiser if you really need to know how the left hand side of
Equation 4 was integrated)

• Substituting the initial condition, y(0) = 1, into Equation 5 leads to
0 + 1 = 0 + C ) C = 1.

• And the solution of the DE is given implicitly by

ln |y |+ y2 = sin x + 1.

• Note the di�culty of finding an explicit solution in this case.
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dy = cos x dx , provided y 6= 0. (4)

• In fact, y = 0 is a solution to the DE (’though it doesn’t also satisfy the
initial condition), so we may assume y 6= 0 and look for other solutions.

• Integrating both sides of Equation 4, we get

ln |y |+ y2 = sin x + C . (5)

(see visualiser if you really need to know how the left hand side of
Equation 4 was integrated)

• Substituting the initial condition, y(0) = 1, into Equation 5 leads to
0 + 1 = 0 + C ) C = 1.

• And the solution of the DE is given implicitly by

ln |y |+ y2 = sin x + 1.

• Note the di�culty of finding an explicit solution in this case.
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Solving First Order ODEs
Autonomous First Order ODEs - a geometric look

Linear First Order Equations

,! Definition: A linear first order ODE is on which can be written as

(Derivative of unknown function) + (function of independent variable)⇥(unknown function)

= function of independent variable

,! To solve the general first order linear ODE, dy
dt + p(t)y = r(t) , we seek to

multiply both sides of the equation by an integrating factor I(t) chosen so that
the left hand side of the equation becomes, by the product rule (in reverse),

[I( ) ]. NOTE this would then make it easy to use the Fundamental
Theory of Calculus to solve for y(t).

I The modified linear first order ODE would then look like

I(t)
dy

dt
+ I(t)p(t)y =

d

dt
[I(t)y ] = I (t)r(t) (6)
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Solving First Order ODEs
Autonomous First Order ODEs - a geometric look

Reminder: I(t) dydt + I(t)p(t)y = d
dt [I(t)y ] = I (t)r(t) (6)

I The obvious thing to do is to apply the product rule to di↵erentiating I(t)y and
hope that by matching terms/comparing with the left hand side of the modified
linear first order ODE, Equation (6), we can figure out what I(t) should be.

So d
dt [I(t)y ] =

dI
dt y + I

dy
dt by the product rule. Comparing that to the left hand

side of Equation (6), I(t) dydt + I(t)p(t)y , we conclude that I(t)p(t) must = dI
dt .

I That last equation can be viewed as a separable ODE: dI
dt = Ip(t))

1

I

dI = p(t) dt )
Z

1

I

dI =

Z
p(t) dt.

Ignoring constants of integration (we only need one function I(t) to serve as the
integrating factor), we solve to get ln [I( )] =

R
( ) ) I( ) =

R
( ) .

I Hence, the integrating factor to choose when solving dy
dt + p(t)y = r(t) is

always
I(t) = e

R
p(t) dt . (7)
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Autonomous First Order ODEs - a geometric look

Reminder: I(t) dydt + I(t)p(t)y = d
dt [I(t)y ] = I (t)r(t) (6)

I The ODE, Equation (6), then becomes d
dt

⇣
e
R
p(t) dty

⌘
= e

R
p(t) dt r(t), and by

the Fundamental Theorem of Calculus we integrate both sides with respect to t
to get

e
R
p(t) dty =

Z h
e
R
p(t) dt r(xt

i
dx + C , (8)

from which it is easy to find y :

y = e�
R
p(x) dx

⇢Z h
e
R
p(x) dx r(x)

i
dx

�
+ Ce�

R
p(x) dx .

,! Instead of focussing on the above formula, I recommend remembering the
process of multiplying the equation by an integrating factor to get the product
rule in reverse, then using the Fundamental Theorem of Calculus to solve the
resulting modified ODE.
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Autonomous First Order ODEs - a geometric look

• EXAMPLE 6 Find the General Solution of 2t dydt + y = 3t.

• ANSWER First, write the equation in standard form, dy
dt +

1
2t y = 3

2 .

Next, the integrating factor is e
R

1
2t dt = e

1
2 ln t = e ln t

1
2 = t

1
2 .

Therefore, multiplying both sides of the original ODE by this
integrating factor, and using the product rule (in reverse) on the
left hand side, we get

d

dt

n

t
1
2 y(t)

o

=
3

2
t

1
2 ) t

1
2 y(t) =

Z

3

2
t

1
2 dt = t

3
2 + C

) y(t) = t�
1
2

n

t
3
2

o

+ Ct�
1
2

So y(t) = t + Ct�
1
2 (CHECK !).
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• EXAMPLE 7

(a) Solve the initial value problem t dy
dt = 1 + t3, y(1) = 4

3 .

(b) Find the general solution of dx
dt = 4x + 2e5t .

(c) Solve the initial value problem y
cos(x)

dy
dx = 1, y(0) = 4.

(a) This is an integration in disguise problem. By dividing both sides by t, this can

be re-written as = 1 + 2 so that this equation can be solved by integrating

both sides with respect to t: ( ) =
R ⇣

1 + 2
⌘

= ln +
3

3 + . Next,

using the initial condition, we have 0 +
1

3
+ C =

4

3
) = 1

(b) This is a linear equation and can be written in standard form as

� 4 = 2 5 . The integrating factor is
R

�4 = �4 . And thus

e�4tx =
R
2(e�4t)e5t dt = 2

R
et dt. Thus the solution is

x(t) =
1

e�4t
(2et) = 4 ⇥

2 +
⇤
.

(c) This is a separable equation: = cos( ) . So

Z
y dy =

Z
cos(x) dx )

2

2 = sin( ) + . Next, using the initial condition, y(0) = 4, we conclude

that 42/2 = 0 + C ) = 8
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NOTE it is possible for a di↵erential equation to fall into more than one
of the categories integration in disguise, separable, or linear - in which
case you can select the solution technique you prefer.

• For example, the equation in part (a) of EXAMPLE 7 could also
have been viewed as a linear ODE (in addition to integration in
disguise). We will re-do the problem treating the ODE as linear:

Solve the initial value problem t dydt = 1 + t3, y(1) = 4
3 .

I ANSWER In standard form this equation is dy
dt + 0y = 1

t + t2.

So the integrating factor is e
R
0 dt = e0 = 1 and thus

d

dt
(1⇥y) = 1⇥

✓

1

t
+ t2

◆

) 1⇥y =

Z

✓

1

t
+ t2

◆

dt = ln t+
t3

3
+C .

And as in EXAMPLE 7, the initial condition means C = 1.

I Can you think of a first order ODE which could be considered both
linear and separable? See Tutorial 2 for some more cases of ODEs
which fall into more than one of the three categories we have
considered.
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Autonomous First Order ODEs - a geometric look

I KEY DEFINITION : An ODE which is not linear is called

nonlinear.

I NOTE for now I have only o�cially defined what it means for a first
order ODE to be linear, however the definition generalises in the
“natural” way for higher order ODEs.

For example, A linear second order ODE for y(t) is on which can
be written as

d2y

dt2
+ p1(t)

dy

dt
+ p2(t)y = r(t).

• For example, the separable ODEs in EXAMPLE 4 ( dudt = eu+3t) and
EXAMPLE 5 (y 0 = y cos x

1+2y2 ) are nonlinear since they cannot be

written in the form dy
dt + p(t)y = r(t).
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Autonomous First Order ODEs - a geometric look

• Are the ODEs from EXAMPLE 1 d3y
dx3 � sin(x) = 4x3, EXAMPLE 2

ey
⇣

5� dz
dy

⌘

= 6� 10 cosh y), and EXAMPLE 3 x 00(t) = 3t linear

or nonlinear?

I ANSWER
d3y
dx3
� sin(x) = 4x3 can be written as

d3y
dx3

+ 0 d2y
dx2

+ 0 dy
dx + 0y = sin(x) + 4x3 so is linear;

ey
⇣
5� dz

dy

⌘
= 6� 10 cosh y can be written as

dz
dy + 0(z) = 5� 6e�y + 10e�y cosh(y) so it is linear;

x 00(t) = 3t can be written as x 00(t) + 0x 0(t) + 0x = 3t so is linear.

• Linear DEs have many nice properties which nonlinear DEs do not
have. For example, if y1(t) and y2(t) are two solutions to a linear
homogeneous (right hand side function g(t) ⌘ 0) DE, so is
ay1(t) + by2(t) for any constants a and b (not the case for
nonlinear DEs).
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Solving First Order ODEs
Autonomous First Order ODEs - a geometric look

Existence and Uniqueness of Solutions of IVPs

For the initial value problem

dy

dt
= f (t, y), y(t0) = y0 :

,! If f and
@f

@y
are continuous in some rectangle ↵ < t < �, � < y < �

containing the point (t0, y0), then in some interval

t0 � h < t < t0 + h contained in ↵ < t < � there exists a unique

solution to the above IVP.

 A proof of this is quite advanced and is omitted. A simplified version can be
found in section 2.8 of Elementary Differential Equations by Boyce and
Diprima and more thorough proofs and discussions of existence and uniqueness
of solutions can be found in books such as Ordinary Differential

Equations by Birkho↵ and Rota (for example, in sections 10-12 of chapter 1).
I In the case of linear first order IVPs y 0 + p(t)y = r(t), y(t0) = y0, the above

theorem becomes: If p and g are continuous on an open interval

containing the point t = t0, then there exists a unique solution to

the IVP on that same open interval containing t0.
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Autonomous First Order ODEs - a geometric look at solution trends

7! Introduction Sometimes, the solution of an ODE (which may be
hard to find) is not so important; instead, patterns or general
behaviours of the solutions are good enough for the situation being
modelled, and these can be determined by a geometric analysis of
the ODE without solving it!.

I This is often the case, for example, with population models where
we sometimes just want to see the long term trend - i.e., what
happens to the population as time ! 1, or see if there are certain
threshold population values on either side of which the population
evolution is very di↵erent.

I KEY DEFINITION : If a first order ODE can be written

in the form dy
dt = f (y), so that the right-hand-side is

a function of the dependent variable y only, then the

ODE is called autonomous. Otherwise, it is called

non-autonomous (or just not autonomous ).
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I For example, dy
dt = y2 � 6y � 8ey is autonomous but dy

dt = t2 � 6ty
is not.

I Many (but not all) of the ODEs we study qualitatively will be
autonomous.

• Note autonomous ODEs are sometimes “relatively” easy to solve,
using the separation of variables technique  see, for example,
Tutorial 2.

However we will often be interested in qualitatively studying the
trends in their solution without actually solving them.

7! In an autonomous ODE
dy

dt
= f (y), if f (y) is di↵erentiable (hence

continuous) then any root(s) of f (y) is/are called equilibrium
point(s) or critical point(s) of the ODE.
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7! If y = y0 is an equilibrium point of dy
dt = f (y), so

= ( 0) = 0

then y(t) = y0 is a solution to the same ODE with the special
initial condition y(t0) = y0. Thus y0 is also called an equilibrium
solution of the ODE.

7! KEY DEFINITION For autonomous ODE

dy

dt
= f (y),

the (constant) solutions to f (y) = 0 are called

equilibrium points, critical points, or equilibrium

solutions to the ODE.

Thus if f (y0) = 0 then y(t) = y0 is an equilibrium

solution of the ODE dy
dt = f (y).
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I On a graph of solutions y versus t of the ODE dy
dt = f (y)

where we are only interested in solutions over the interval
t � t0, the graphs of the equilibrium solutions would be
horizontal lines which would separate the plane (for
t � t0) into regions where the general behaviour as
t ! 1 of other solutions would be the same.

7! Hence, finding equilibrium solutions of dy
dt = f (y) is

a key first step to identifying the general behaviour
of solutions as t ! 1.
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4-2 | P a g e   
 

©Kevin Parrott, University of Greenwich, 2010 
 

Example: 

𝑑𝑦
𝑑𝑡 = 𝑦

𝑦 − 1 , 𝑦 ≠ 1 

clearly 𝑦0 = 0 is an equilibrium point. It is not difficult to solve this equation 
and the solution is  

𝑦(𝑡)− ln𝑦(𝑡) = 𝑡 + 𝐶 

but we cannot write 𝑦(𝑡) as an explicit function of 𝑡 . Despite this we know 
from the equation that there is a constant zero solution for a zero starting 
value.  

What happens for this case if we start off with a nearby non-zero value e.g. 
0.1 or −0.1 ? The solution simply moves to the equilibrium value i.e. this value 
is in some sense stable. 

 

 

 

 

 

 

 

 

 

 

 

 

The key to understanding the behaviour of the solutions close to a critical point 
is too look at the gradient of the RHS i.e. 𝑑𝑓(𝑦)/𝑑𝑦.  

33 / 75



Introduction - Mathematics for the Life Sciences
Di↵erential Equations

Direction Fields - a qualitative look at solutions
Numerical Solutions of First Order Initial Value Problems

Appendix

Solving First Order ODEs
Autonomous First Order ODEs - a geometric look

7! In the definitions which follow, when the statement solutions which start out
near to y0 (where y(t) = y0 is an equilibrium solutions of dy

dt = f (y)), means

solutions y(t) of dy
dt = f (y) for which y(t0) = y0 ± ✏, where ✏ is small enough

so that we do not cross over another equilibrium solution. In other words,
solutions which start out within one of the regions determined by the horizontal
lines given by all of the equilibrium solutions of dy

dt = f (y). Note such solutions
are themselves NOT constant.

I For the autonomous di↵erential equation
dy

dt
= f (y) an equilibrium solution y0

is:

B stable/attracting if solutions y(t) which start out near to y0 move

closer to y0 as t !1;

B unstable/repelling if solutions y(t) which start out near to y0 move

away from y0 as t !1;

B semistable if some solutions y(t) which start out near to y0 move

closer to y0 and some move away from y0 as t !1. In general,

solutions that start out below y0 will move away from y0 AND solutions

that start out above y0 will move towards y0 OR vice versa.
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The basic rules for classifying an equilibrium solution y0 of
dy
dt = f (y) as stable, unstable, or semistable can be easily
figured out using basic calculus and the aid of two related
graphs to figure out how solutions starting out close to that
equilibrium point behave:

1. f (y) against y (showing the graph crossing the y axis at
y = y0), and

2. y(t) versus t (showing the equilibrium solution
y(t) = y0).

7! In the upcoming few slides, the images are, without loss
of generality, for an equilibrium point of y0 = 2.
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I The key to understanding the behaviour of solutions close to a
critical/stationary/equilibrium point, y = y0, is to look at the
gradient of the RHS at that equilibrium point - i.e.

df (y)

dy

�

�

�

�

y=y0

i .e. f 0(y0).

I NOTE we are di↵erentiating ( ) with respect to here, so we get
the rate of change of ( ) with respect to . In that case, is
being seen as an independent variable. We then use that
information to determine what the behaviour of = ( ) is for
values immediately above and below an equilibrium point, = 0.
In this latter case, where the behaviour of = ( ) is being
deduced, is a dependent variable and the independent variable.
MAKE SURE YOU UNDERSTAND THIS!

I Understanding the points above is key to easily classifying the equilibrium points

of an autonomous ODE as stable, unstable, or semi-stable, so make a special

e↵ort to understand the geometry and calculus behind the next few slides.
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I Understanding the points above is key to easily classifying the equilibrium points

of an autonomous ODE as stable, unstable, or semi-stable, so make a special

e↵ort to understand the geometry and calculus behind the next few slides.
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f 0(y0) < 0

f (y) is decreasing through 0 at y = y0, therefore

,! for solutions y(t) < y0 we have f (y) = dy
dt > 0 so such solutions are increasing

towards y0 as t !1;
,! Meanwhile for solutions y(t) > y0 we have f (y) = dy

dt < 0 so such solutions are
decreasing towards y0 as t !1.

I In summary, solutions starting out near to y0 move towards y0, · · ·
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HENCE

0( 0) < 0

+

0 is a STABLE equilibrium point
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HENCE

0( 0) > 0

+

0 is an UNSTABLE equilibrium point
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0( 0) = 0

,! This is an ambiguous case and requires a careful inspection of the

ODE - in particular, of the SIGN (+ve or �ve) of f (y) = dy
dt

immediately to the left and right of y = y0. There are 3
possibilities (recall always that f (y0) = 0):

1. If f (y) is positive to the left of y0 and negative to the right of y0,

then 0 is a STABLE equilibrium point .

I E.g. y0 = 0 and f (y) = �2y5.
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0( 0) = 0

2. If f (y) is negative to the left of y0 and positive to the right of y0,

then 0 is an UNSTABLE equilibrium point .

I E.g. y0 = 0 and f (y) = y3.
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0( 0) = 0  case 3

# #
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3. NEW CASE - SEMI-STABLE EQUILIBRIUM POINT If

f 0(y0) = 0 and f (y) is negative to the left AND right of y0 OR
f (y) is positive to the left AND right of y0, then

0 is an SEMI-STABLE equilibrium point .

In this case, starting values of y on one side of the equilibrium
point, y0, will approach y0 as t ! 1 (stable), and starting values
of y on the other side of y0 will move away from y0 as t ! 1
(unstable).

I E.g. 0 = 4 and ( ) = ( � 4)2. Here, ( ) = > 0 on both

sides of the equilibrium point, hence ( ) is increasing on both
sides of the equilibrium point. So for < 0, the solutions ( )
approach the equilibrium point (stable), and for > 0 the
solutions ( ) move away from the equilibrium point unstable,
hence 0 is an SEMI-STABLE equilibrium point.
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• EXAMPLE 8 (From a MATH1106 Tutorial) Find all
equilibrium points of the following di↵erential equations,
and use calculus to classify each equilibrium point as
stable, unstable, or semi-stable:

(a)
dy

dt
= (y2 � 4)(y2 � 25)(y + 2).

(b)
dy

dt
= e3y .

(c)
dy

dt
= e3y � e.

(d)
dy

dt
= (y � 4)3 ln(y2 + 1).
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(a) Answer: Setting dy
dt = 0 and solving for y we get

(y2 � 4)(y2 � 25)(y + 2) = 0 or (y � 2)(y + 2)2(y � 5)(y + 5) = 0

so that the equilibrium points are y = �5,�2, 2, 5.

Next, by the product rule,

df

dy
= f 0(y) = 2y(y2 � 25)(y + 2) + 2y(y2 � 4)(y + 2) + (y2 � 4)(y2 � 25).

f 0(�5) = 630 > 0 ) � 5 is an UNSTABLE equilibrium point.

f 0(2) = �336 < 0 ) 2 is a STABLE equilibrium point.

f 0(5) = 1470 > 0 ) 5 is an UNSTABLE equilibrium point.

Meanwhile f 0(�2) = 0 ) we have to investigate further.

We pick a point to the left and a point to the right of the equilibrium point,
y = �2, and see what the sign of dy

dt = f (y) = (y2 � 4)(y2 � 25)(y + 2) is.
For example, for y = �3 we get f (�3) = 80 > 0 AND for y = 0 we get

f (0) = 200 > 0 so that dy
dt = f (y) is the same sign on both sides of the

equilibrium point y = �2, hence = �2 is a SEMISTABLE equilibrium point.
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Meanwhile f 0(�2) = 0 ) we have to investigate further.
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f (0) = 200 > 0 so that dy
dt = f (y) is the same sign on both sides of the

equilibrium point y = �2, hence = �2 is a SEMISTABLE equilibrium point.
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(b) Answer: e3y is never zero so there is NO equilibrium
solution to this di↵erential equation.

(c) Answer: Setting dy
dt = 0 and solving for y we get

e3y = e ), taking natural logarithms of both sides of the
equation,

3y = 1 ) y =
1

3
.

Next, df
dy = 3e3y ) f 0

�

1
3

�

= 3e > 0, therefore y = 1
3 is

an UNSTABLE equilibrium point.
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(d) Answer: Setting dy
dt = 0 and solving for y we get (y � 4)3 ln(y2 + 1) = 0. One

obvious solution is y = 4, but we could also have ln(y2 + 1) = 0 if
y2 + 1 = 1) y = 0.
So the two equilibrium solutions are y = 0 and y = 4.

Next, using the product and chain rules,

df

dy
= f 0(y) = 3(y � 4)2 ln(y2 + 1) +

2y

y2 + 1
(y � 4)3.

So f 0(0) = 0 and f 0(4) = 0, and both equilibrium points have to be examined
more closely.
For the equilibrium point y = 0, we take two points on either side of y = 0 (but
not beyond y = 4, the other equilibrium point) and find the sign of f (y)
evaluated at those points. For example,

f (�1) = �125 ln(2) < 0 AND f (1) = �27 ln 2 < 0

so y = 0 is a SEMISTABLE equilibrium point.
For the equilibrium point y = 4, we take two points on either side of y = 4 (but
not beyond y = 0, the other equilibrium point) and find the sign of f (y)
evaluated at those points. For example,

f (1) = �27 ln(2) < 0 AND f (5) = ln 26 > 0

so y = 0 is an UNSTABLE equilibrium point.
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Classifying Equilibrium Solutions via LINEARISATION (Taylor series again!)

,! An alternative way to arrive at earlier conclusions concerning

classifying an equilibrium solution, y0, of
dy

dt
= f (y) by looking at

f 0(y0), is to consider a Taylor series expansion about y0 of a
nearby solution ( ) = 0 + ⌘( ), where ⌘(t) represents a small
perturbation of the equilibrium solution y(t) = y0.

,! First note y(t) = y0 + ⌘(t) is also a solution of the di↵erential
equation therefore

d

dt
(y0 + ⌘(t)) =

d

dt
(y0) +

d

dt
(⌘(t)) = 0 +

d⌘

dt
= f (y0 + ⌘(t))

I So, taking the last equation in the sequence and using Taylor’s
theorem, provided ⌘(t) is smooth enough we have that

d⌘

dt
= f (y0+⌘(t)) = f (y0)+f 0(y0)⌘(t)+f 00(y0)

⌘(t)2

2!
+Higher Order Terms
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,! Given that f (y0) = 0 and if ⌘(t) is small enough for us to ignore all
nonlinear higher order terms and truncate the Taylor series after the
linear term (hence the word “linearisation”), then we see that
(approximately) ⌘(t) satisfies the linear and separable ODE

d⌘

dt
= f 0(y0)⌘(t)

which can be easily solved to get ⌘(t) = Ce f
0(y0)t .

I From this solution, it is clear that for the nearby solution
y(t) = y0 + ⌘(t) = y0 + e f

0(y0)t to equilibrium solution y(t) = y0, if
f 0(y0) < 0 then limt!1 y(t) = y0 hence the equilibrium solution
y(t) = y0 is STABLE, whereas if f 0(y0) > 0 then limt!1 y(t) = 1
hence the equilibrium solution y(t) = y0 is UNSTABLE.

I NOTE we also see that if f 0(y0) = 0 then the nonlinear terms in
the Taylor series expansion determine the stability properties of
equilibrium solution y(t) = y0.
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Autonomous First Order ODEs - a geometric look

,! Given that f (y0) = 0 and if ⌘(t) is small enough for us to ignore all
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linear term (hence the word “linearisation”), then we see that
(approximately) ⌘(t) satisfies the linear and separable ODE
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Direction Fields - a qualitative look at solutions

,! It is important that you understand (1) what a direction field for a given DE is,
(2) how to create one, and (3) what it tells you about solutions to that
equation.

,! Consider the general first order ODE dx
dt = f (t, x). What is the dependent

variable? x = x(t).

,! In the t � x plane, for each specific ordered pair (t0, x0),
dx
dt |(t0,x0) = f (t0, x0) is

the slope/gradient/derivative of a solution curve at the point (t0, x0). So a
short line segment at (t0, x0) with slope dx

dt |(t0,x0) = f (t0, x0) will roughly look
like a small portion of the solution curve at the point (t0, x0).

,! Definition: If we compute f (t0, x0) and then draw a short line segment at
(t0, x0) of slope f (t0, x0) for a large number of points ( 0, 0) in the t � x
plane, we get a DIRECTION FIELD for the DE dx

dt = f (t, x).

,! A direction field for a DE gives a good idea of how the graphs of solutions to
the DE look. In other words, it gives a good qualitative idea of the behaviour of
solutions to the DE .
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,! Online Direction Field Drawer
http://www.math.psu.edu/cao/DFD/Dir.html

,! EXAMPLE 9
dx

dt
=

2x

1 + t
. Draw a direction field for 0  t  2 and

0  x  2.

,! A few sample calculations: at t = 0, x = 0 we get dx
dt = 0. At

t = 2, x = 1 we have dx
dt = 2

3 . At t = 1, x = 2 we have 4
2 = 2. See

table below for more:

dx
dt = 2x

1+t , t = 0 . . . 2, x = 0 . . . 2

t ! 0 0.5 1 1.5 2
x #
0 0 0 0 0 0
0.5 1 2/3 1/2 2/5 1/3
1 2 4/3 1 4/5 2/3
1.5 3 2 3/2 6/5 1
2 4 8/3 2 8/5 4/3
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I Direction fields can give us insight into equilibrium solutions of DEs.

I E.g., From EXAMPLE 8(a), the direction field below clearly shows the four
equilibrium solutions and makes it easy to classify them:

y = �5 unstable; y = �2 semistable;

y = 2 stable; y = 5 unstable
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I E.g., From EXAMPLE 8(a), the direction field below clearly shows the four
equilibrium solutions and makes it easy to classify them:
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,! Optionally and preferably, you can also
use MATLAB to draw direction fields,
using the quiver() function.

I For more on this see Tutorial 2.
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Numerical Solutions of First Order IVPs

,! In the interest of time, we will cover only 3 methods:
1. Euler’s method - for simplicity
2. Heun’s (Improved Euler) method - relatively simply and fairly

accurate, error O(h2)

3. Runge-Kutta (4th order) - very accurate, error O(h4).

 For practical purposes, only the last two will be used much
since they are far more accurate that Euler’s method.

,! We will later generalise them to deal with systems of
ODEs.

,! These numerical methods will be helpful as tools to
investigate numerical solutions to IVPs and systems of
IVPs which are di�cult or impossible to solve analytically.
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INTRODUCTION

I We seek approximate solutions to the general first order IVP

( ) = ( , ), 2 [ 0, ], ( 0) = 0.

I The numerical methods we will explore here to approximate the
solutions to ODEs work by replacing the continuous problem of
finding a continuous function y(t) by the discrete problem of
approximating y(t) at N + 1 (usually) equally-spaced points.

If we
then wish to reconstruct an approximation to the entire function
y(t), we typically just join the points (ti , yi ) by line segments to
obtain a piece-wise linear approximation to y(t) on all of [t0,T ]  
see the next page for an illustration of this

I As always, NOTATION and LANGUAGE will be very
important in what follows; pay close attention to it and
ensure that you learn and understand the notation and
language used!
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Here the unknown function y(t) is approximated at only 11 points,

0 = 0, 1 = 0.1, 2 = 0.2, . . . , 10 = 1 (indicated by the N symbols on the

t � axis), and the approximate value of the function at each ti is indicated by the ⇤
symbols.
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NOTATION
,! In general, when approximating the solution to

= ( , ), 2 [ 0, ], ( 0) = 0.

we adopt the following notation conventions:

 The interval [t0,T ] is broken into N subintervals whose N + 1
points are denoted t0, t1, t2, . . . , tN , and with

=
� 0

the ti s are the evenly-spaced points (the only case we will consider
in depth in this course) ti = t0 + ih, i = 0, 1, 2, . . . ,N.

 Since a numerical method gives only an approximation to the true
solution function y(t) at certain t values, we use a di↵erent
notation to refer to this approximate solution:

Yi or yi ⇡ y(ti ) for i = 0, 1, 2, . . . ,N.
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NOTATION ALERT!!!

,! One of the (annoying) features of the chosen programming
language for this course, MATLAB, is that all vectors (more

generally, all arrays) MUST have their indexing start at 1 and not

0 (indexing starting at 0 is allowed and is the default in most
other relevant programming languages).

I So if we have a MATLAB vector t, its first entry must be (1), not
(0).

 One negative consequence of this is that we cannot translate the
notation just introduced directly into MATLAB by mapping ti 7!
t(i) and yi 7! y(i) for i = 0, 1, 2, . . . ,N.

� Instead, we must have ti 7! t(i+1) and yi 7! y(i+1) for

i = 0, 1, 2, . . . ,N.
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NOTATION ALERT (continued) !!!

,! One simple solution is to use the 1 to N+1 indexing throughout the lecture

notes for all formulae, so that they can easily be translated into MATLAB.

The

disadvantage of this approach is that the 0 to N indexing is what is used in

most textbooks, and is by far more common and intuitive than the 1 to N+1

indexing.

 THEREFORE, I have chosen to use the traditional 0 to N
indexing in these lecture notes.

I As a consequence, you will have to do the index mapping 7! + 1

whenever translating formulae for di↵erent numerical methods from the notes

to MATLAB programs.
I For example, a loop that runs from 0 to N in the notes would have to run from

1 to N + 1 in MATLAB.

,! However, to make life easier, I will endeavour to always give the main formula

for a numerical method in the standard form with the 0 to N indexing, THEN

in MATLAB form with 1 to N+1 indexing (and vector notation).
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Euler’s Method

,! We begin with the simplest rule for approximating the solution to
the general first order IVP dy

dt = f (t, y), t 2 [t0,T ], y(t0) = y0.:

Euler’s Method

0 = ( 0) THEN

yi+1 = yi + hf (ti , yi ) for i = 0, 1, 2 . . . ,N � 1.

In MATLAB syntax, this would be

Euler’s Method (MATLAB version)

(1) = 0 and = 0 : : ,
(1) = ( (1)) = 0 THEN

y(i + 1) = y(i) + hf (t(i), y(i)) for i = 1, 2, 3 . . . ,N.
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• See Tutorial 2 for programs corresponding
to Euler’s method, Heun’s Method, and
the fourth order Runge-Kutta method.

I The method is derived from truncating a
Taylor series expansion of the (unknown)
solution function y(t).
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REMINDER dy
dt = f (t, y), y(t0) = y0 then in Euler’s method y0 = y(t0) and yi+1 = yi + hf (ti , yi ) for

i = 0, 1, 2 . . . ,N � 1

I DERIVATION Euler’s method is easy to derive from a Taylor series

expansion of the solution in which the quadratic and higher order terms are
ignored.

Assuming that the solution function y(t) of the standard first order
IVP is C2 on [t0,T ] (i.e., y(t), y 0(t) and y 00(t) are continuous on [t0,T ]), then

y(t + h) = y(t) + hy 0(t) +
1

2
y 00(t)h2 + O(h3)

= y(t) + hf (t, y) +
1

2
y 00(t)h2 + O(h3)
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Heun’s Method (or The Improved Euler Method)

,! DERIVATION The idea here is to start with Euler’s method

yi+1 = yi + hf (ti , yi )

and TRY to replace the f (ti , yi ) by the AVERAGE of f evaluated
at (ti , yi ) and (ti+1, yi+1).

I What is the flaw in this plan???

You do not know yi+1 - that’s what you are trying to compute - so
putting it into the argument of the function f is “tricky”.

I What is a way around this problem???

The Heun’s method approach is to use the Euler approximation
to yi+1 in the argument of f (ti+1, yi+1):

f (ti+1, yi+1) is approximated by f (ti+1, yi + hf (ti , yi ) ).
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,! IMPLEMENTATION Heun’s method can be described in a one-step or
two-step manner:

Heun’s Method

ONE-STEP TWO-STEP

0 = ( 0) THEN 0 = ( 0) THEN

˜+1 = + ( , ) AND

+1 = + 2 [ ( , ) + ( +1, + ( , ))] +1 = + 2 [ ( , ) + ( +1, ˜+1)]

for = 0, 1, 2 . . . , � 1. for = 0, 1, 2 . . . , � 1

,! In MATLAB syntax this would be: Heun’s Method (MATLAB version)

ONE-STEP TWO-STEP
= 0 : : , AND (1) = ( (1)) = 0 THEN

( + 1) = = ( ) + ( ( ), ( )) AND
( ) + 2 [ ( ( ), ( )) + ( ( + 1), ( ) + ( ( ), ( )))] ( + 1) = ( ) + 2 [ ( ( ), ( )) + ( ( + 1), )]

for = 1, 2, . . . ,
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The Fourth-Order Runge-Kutta Method (RK4)

k1 = hf (tn, yn)
k2 = hf (tn +

1
2h, yn +

1
2k1)

k3 = hf (tn +
1
2h, yn +

1
2k2)

k4 = hf (tn + h, yn + k3)

+1 = + 1
6 1 +

1
3 2 +

1
3 3 +

1
6 4

67 / 75



Introduction - Mathematics for the Life Sciences
Di↵erential Equations

Direction Fields - a qualitative look at solutions
Numerical Solutions of First Order Initial Value Problems

Appendix

EXAMPLE 10 : Solving
dy

dt
= �

1

2t
y , t 2 [1, 2], y(1) = 12 using N = 5 subintervals

(so h = 0.2)  EXACT SOLUTION, y(t) = 12t�1/2.

i TIME Yi (EULER) y(ti ) (EXACT) ERROR
0 1.000000 12.000000 12.000000 0.0000000000
1 1.200000 10.800000 10.954451 0.1544511501
2 1.400000 9.900000 10.141851 0.2418510567
3 1.600000 9.192857 9.486833 0.2939758376
4 1.800000 8.618304 8.944272 0.3259683386
5 2.000000 8.139509 8.485281 0.3457724457

i TIME Yi (HEUN) y(ti ) (EXACT) ERROR
0 1.000000 12.000000 12.000000 0.0000000000
1 1.200000 10.950000 10.954451 0.0044511501
2 1.400000 10.135268 10.141851 0.0065831996
3 1.600000 9.479190 9.486833 0.0076427302
4 1.800000 8.936112 8.944272 0.0081602678
5 2.000000 8.476895 8.485281 0.0083865803

i TIME Yi (RK4) y(ti ) (EXACT) ERROR
0 1.000000 12.000000 12.000000 0.0000000000
1 1.200000 10.954442 10.954451 0.0000090013
2 1.400000 10.141839 10.141851 0.0000119113
3 1.600000 9.486820 9.486833 0.0000127666
4 1.800000 8.944259 8.944272 0.0000128513
5 2.000000 8.485269 8.485281 0.0000126333

Compare the errors at the final time with the errors in the following slides where the
same problem is done with N = 10) h = 0.1.
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Reminder: solving
dy

dt
= � 1

2t
y , t 2 [1, 2], y(1) = 12 using N = 10

subintervals (so h = 0.1)  EXACT SOLUTION, y(t) = 12t�1/2.

i TIME Yi (EULER) y(ti ) (EXACT) ERROR
0 1.000000 12.000000 12.000000 0.0000000000
1 1.100000 11.400000 11.441551 0.0415510709
2 1.200000 10.881818 10.954451 0.0726329683
3 1.300000 10.428409 10.524696 0.0962871408
4 1.400000 10.027316 10.141851 0.1145346232
5 1.500000 9.669198 9.797959 0.1287609816
6 1.600000 9.346891 9.486833 0.1399415906
7 1.700000 9.054801 9.203580 0.1487788322
8 1.800000 8.788483 8.944272 0.1557885535
9 1.900000 8.544359 8.705715 0.1613561825
10 2.000000 8.319507 8.485281 0.1657741033
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Reminder: solving
dy

dt
= � 1

2t
y , t 2 [1, 2], y(1) = 12 using N = 10

subintervals (so h = 0.1)  EXACT SOLUTION, y(t) = 12t�1/2.

i TIME Yi (HEUN) y(ti ) (EXACT) ERROR
0 1.000000 12.000000 12.000000 0.0000000000
1 1.100000 11.440909 11.441551 0.0006419800
2 1.200000 10.953370 10.954451 0.0010807989
3 1.300000 10.523310 10.524696 0.0013860946
4 1.400000 10.140250 10.141851 0.0016009727
5 1.500000 9.796206 9.797959 0.0017530864
6 1.600000 9.484972 9.486833 0.0018607202
7 1.700000 9.201644 9.203580 0.0019362809
8 1.800000 8.942284 8.944272 0.0019883768
9 1.900000 8.703692 8.705715 0.0020230975
10 2.000000 8.483237 8.485281 0.0020448245
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Reminder: solving
dy

dt
= � 1

2t
y , t 2 [1, 2], y(1) = 12 using N = 10

subintervals (so h = 0.1)  EXACT SOLUTION, y(t) = 12t�1/2.

i TIME Yi (RK4) y(ti ) (EXACT) ERROR
0 1.000000 12.000000 12.000000 0.0000000000
1 1.100000 11.441551 11.441551 0.0000003598
2 1.200000 10.954451 10.954451 0.0000005624
3 1.300000 10.524696 10.524696 0.0000006781
4 1.400000 10.141850 10.141851 0.0000007436
5 1.500000 9.797958 9.797959 0.0000007792
6 1.600000 9.486832 9.486833 0.0000007967
7 1.700000 9.203579 9.203580 0.0000008028
8 1.800000 8.944271 8.944272 0.0000008018
9 1.900000 8.705714 8.705715 0.0000007963
10 2.000000 8.485281 8.485281 0.0000007881
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Reminder: solving
dy

dt
= �

1

2t
y , t 2 [1, 2], y(1) = 12 using N = 10 subintervals (so

h = 0.1)  EXACT SOLUTION, y(t) = 12t�1/2.

I Only an Euler’s method plot is shown below since the other methods are
su�ciently accurate for their graphs to be indistinguishable from the exact
solution graph.
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I Note how with Euler’s method (Error O(h))
halving of the step size causes the error in the
final step to reduce by about one half, with
Heun’s method (Error O(h2)) the reduction in
error is by about one quarter, and with the 4th
order Runge-Kutta method (Error O(h4)) the
reduction in error is by about one sixteenth.

Students familiar with big O notation should
know why.
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HOMEWORK:

I Review the material in this lecture and do Tutorial 2.
Come to class with questions about any aspect of this
review which you find particularly di�cult.

I See Tutorial 1 for a quick introduction to Matlab. Since it
will be used as a tool in this course, it is useful to have
some familiarity with it.

I Have good calculus and linear algebra books nearby.
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APPENDIX - Vocabulary/Notation

,! Becoming familiar with the relevant vocabulary and notation is crucial to
developing proficiency in mathematics and its applications. Test yourself to see
if you have a good understanding of the following, all mentioned/defined earlier
in this lecture (and in no particular order):

I Initial value problem.
I Ordinary di↵erential equation.
I Equilibrium solution.
I Separable ODE.
I Stable, unstable, semistable equilibrium solution.
I Partial di↵erential equation.
I First order ODE.
I Direction field.
I Critical point.
I Autonomous first order ODE.
I Separation of variables.
I Linear first order ODE.
I Equilibrium point.
I Nonlinear ODE.
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