
Mathematics for the Life Sciences (MATH1134) - Tutorial Sheet 4

This tutorial complements the material covered in Lecture 4.

1. Do the examples in Lecture 4.

2. (Optional) It is possible to write vectorised forms of the numerical methods for systems of
IVPs, which can be implemented in MATLAB essentially just like the corresponding scalar
methods. I will outline how this could be done and then you should do it for Euler’s, Heun’s
and the fourth order Runge-Kutta methods and test your program on the system of IVPs in
EXAMPLE 17 of Lecture 4.

For convenience, we will use column vectors instead of row vectors as the default vector type.

(a) Write your ~f(t, ~y) so that its output is a (column) vector. For example

f = @(t,y) [−4 ∗ y(1)− 2 ∗ y(2) + cos(t) + 4 ∗ sin(t); 3 ∗ y(1) + y(2)− 3 ∗ sin(t)];

(b) Store the approximate solutions in a 2-dimensional array (matrix) Y so that Y (i, j) is the
approximate solution of function yi at timestep tj - i.e Y (i, j) ≈ yi(tj), for i = 1, 2, . . . , n
and j = 0, 1, 2, . . . , N . In MATLAB notation, when Y is full, then

• Y (i, :) will be a row vector of length N + 1 containing all of the approximations to
the function yi(t) at the N + 1 times t0, t1, . . . , tN .

• Y (:, j) will be a column vector of length n containing the approximations to all of the
solution functions at time tj. So, the first entry of this vector will be the approximation
to y1(tj), the second entry will be the approximation to y2(tj), etc.

↪→(do you see the logic behind this notation choice???)←↩
(c) Obviously then, assuming the initial conditions are in a vector ~y0, these values have to be

stored in the matrix Y with a loop such as

for k = 1:n

Y(k,1) = y0(k);

end

(d) It will then be possible to write your main loop in a very similar way to the scalar
case, where at each time step every approximate function Y1, Y2, . . . , Yn is updated. For
example, for Euler’s method this would look like this:

for k = 1:N

Y(:,k+1) = Y(:,k) + h*f(t(k), y(:,k));

end

3. See http://terpconnect.umd.edu/˜petersd/246/matlabode2.html and follow the instructions
there for how to solve a system of ODEs using Matlab’s in-built function ode45, how to
plot trajectories in the phase plane, and how to plot direction fields for systems of 2 ODEs.
Note I provide a slightly modified version of vectfield.m on the course Moodle page called

1

http://terpconnect.umd.edu/~petersd/246/matlabode2.html


new vectfieldarrow funchandle.m (click the A Direction Field Plotter for Systems of 2 Differ-
ential Equations link to download it) so please use that instead. Once you have downloaded it,
type new vectfieldarrow funchandle.m then hit RETURN or ENTER on the Matlab com-
mand window to see detailed instructions of how to use the function, including a full example.
If you save that full example into a script M file then you would only need to modify the f and
possibly the y1 and y2 vectors to generate a direction field for another system of differential
equations.

Note unless you have the Matlab Symbolic Toolkit, you will not be able to use dsolve to find
symbolic solutions.

4. For EXAMPLES 5, 6, 7, 8, 11, 12, 13, and 14 of Lecture 4, use the eigenvalues to classify the
zero vector steady states. Verify with appropriate directon field plots.

5. Find and classify all steady states for the nonlinear system
dy1
dt

dy2
dt

 =

(
y21 − y22 − 1

2y2

)
.

6. ode45 (see Tutorial 3) and several other related in-built Matlab ODE solvers can also be used
to solve SYSTEMS of initial value problems. As an example, this is how it could be used to
solve the system of IVPs in EXAMPLES 17, 19, and 20 of Lecture 4:

dy1
dt

= −4y1 − 2y2 + cos(t) + 4 sin(t) (EXACT SOLUTION)

dy2
dt

= 3y1 + y2 − 3 sin(t) y1(t) = 2e−t − 2e−2t + sin(t)

t ∈ [0, 2], y1(0) = 0, y2(0) = −1 y2(t) = −3e−t + 2e−2t

• Define the function handle f:

f = @(t,y) [-4*y(1)-2*y(2)+cos(t)+4*sin(t); 3*y(1)+y(2)-3*sin(t)];

• Create a vector of t values at which you wish to approximate the solutions to the system
of IVPs:

tspan = 0:0.1:2;

• Create a vector containing the initial conditions:

y0 = [0; -1];

• Call ode45 as follows:

[t, y] = ode45(f, tspan, y0);

The solutions should be stored in matrix y with the first column of y containing the approxima-
tions to the solution function y1(t) and the second column of y containing the approximations
to the solution function y2(t), etc. Also, t will be a time vector containing the same entries as
tspan. Thus if you wanted to plot the (in this case two) approximate solutions on the same
axes you could use the command

plot(t, y(:,1), t, y(:,2))

2



(or you could use tspan instead of t in the above command).

NOTE if you are not concerned about getting the approximations at specific timesteps, you
can instead replace tspan in the ode45 argument list with just a vector indicating the initial
and ending values of the t interval. Matlab will then decide at what times to approximate the
function and return those times in the vector t. For example,

[t, y] = ode45(f, [0 2], y0);

for me returned approximations at 60 times (hence a t vector containing 61 entries).

NOTE again if you store this sequence of commands in a script M file, you can then easily use
ode45 to solve systems of ODEs and plot the solutions (or output it in a table, perhaps using
the disp() or fprintf() command), with only minor modifications required to the M file to
get it to work for another system of ODEs

3


