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Definitions and Conventions

DEFINITIONS : If An⇥n is a square matrix then a non-zero

vector

~x is called an eigenvector of A if A~x is a scalar

multiple of

~x. In other words

A~x = �~x

for some scalar �. That scalar � is called an eigenvalue

of A and

~x is said to be an eigenvector of A
corresponding to � (always think of an

eigenvalue-eigenvector PAIR).

,! So multiplying an eigenvector ~x of A on the left by A simply
stretches or compresses ~x by a factor of |�| and reverses the
direction of ~x if � < 0.

,! NOTATION: It is conventional to use � to represent eigenvalues.
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,! EXAMPLE 1 (a) If A =


1 6
�2 �6

�
has eigenvector ~x =


�3
2

�
, find the

corresponding eigenvalue. (b) If � = �2 is another eigenvalue of A, find a
corresponding eigenvector.

(a) We seek � such that
1 6
�2 �6

�✓
�3
2

◆
= �

✓
�3
2

◆
or

✓
�3 + 12
6� 12

◆
=

✓
�3�
2�

◆

)
✓

9
�6

◆
=

✓
�3�
2�

◆
. So 9 = �3� or �6 = 2� which both imply that

� = �3 (CHECK!).

(b) We seek a vector ~x =


x1
x2

�
such that A~x = �2~x :

1 6
�2 �6

� 
x1
x2

�
= �2


x1
x2

�
or


x1 + 6x2

�2x1 � 6x2

�
=


�2x1
�2x2

�
.

So x1 + 6x2 = �2x1 ) 3x1 + 6x2 = 0 .

And �2x1 � 6x2 = �2x2 ) �2x1 � 4x2 = 0 .

Combining the last two boxed equations, we see

3x1 + 6x2 = �2x1 � 4x2 ) 5x1 + 10x2 = 0 or x1 = �2x2 , and any eigenvector for

eigenvalue �2 is of the form


x1
x2

�
=


�2x2

x2

�
. E.g. x2 = 1 yields


�2
1

�

(CHECK IT IS AN EIGENVECTOR WITH EIGENVALUE -2!).
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,! So from the last example, we see that an eigenvalue can
have infinitely many eigenvectors. In fact, this is always
the case. Each eigenvalue � of a matrix A has infinitely
many corresponding eigenvectors ~x (so A

~
x = �~x). ANY

scalar multiple of an eigenvector of A corresponding to
eigenvalue � is another eigenvector of A.

PROOF: If ↵ is a non-zero scalar and � is an eigenvalue
of A with corresponding eigenvector ~x , then A

~
x = �~x .

Therefore, it follows that A↵~x = ↵(A~x) = ↵(�~x) = �↵~x .
In summary, A(↵~x) = �(↵~x) so that the vector ↵~x is an
eigenvector of A with eigenvalue �.
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How to Find Eigenvalues and Eigenvectors of a Given Matrix, A

,! Always find the eigenvalues first, then the eigenvectors
corresponding to those eigenvalues.

,! Recall the eigenvalue-eigenvector equation is A~x = �~x . Assume A
is a known matrix and � and ~x are to be found.

 It is convenient to re-arrange the equation as follows:
A~x = �~x () A~x = �I~x () A~x � �I~x = ~0

() (A� �I)~x = ~0. (1)
 Recall from earlier (Lecture 2) that if (A� �I ) is non-singular, then

the system (1) has only one solution vector - clearly, ~x = ~0. But
recalling that ~0 cannot, by definition, be an eigenvector, we require
that system (1) has infinitely many solutions. This occurs when
det(A� �I) = 0 (or equivalently, when A� �I is a singular matrix).

7! Since A and I are given, the only unknown in the equation
det(A� �I) = 0 is the eigenvalue(s), �. Hence we solve
det(A� �I) = 0 to find the eigenvalue(s), �.

Dr. Erwin George, Dept. of Mathematics MATH1134
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,! DEFINITIONS: The equation det(A� �I) = 0 is called the
characteristic equation of A, and the expression
det(A� �I) is a degree n polynomial (if A is n⇥ n) called
the characteristic polynomial of A.

 So the eigenvalues of A are simply the roots of its

characteristic polynomial, or equivalently, the solutions of

its characteristic equation.

 NOTE then that if matrix A is n ⇥ n, it will have at most
n distinct roots (some of which might be complex
numbers).

,! Once the eigenvalues of A are found, simply substitute
each into (A� �I)~x = ~0 (or if you prefer, into the
equivalent equation A

~
x = �~x) and solve for

eigenvector(s) ~x - just as in EXAMPLE 1(b).

Dr. Erwin George, Dept. of Mathematics MATH1134
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,! EXAMPLE 2: Find all eigenvalues and, for each eigenvalue, a

corresponding eigenvector for A =


2 5
6 1

�
.

7! ANSWER: First the eigenvalues: Solve det(A� �I) = 0. So

����
2� � 5

6 1� �

���� = 0 ) (2� �)(1� �)� 5(6) = 0

) �2 � 3�� 28 = 0 ) (�� 7)(�+ 4) = 0.

So the two eigenvalues are �1 = 7 and �2 = �4 .

7! To find eigenvector ~x =


x1
x2

�
corresponding to eigenvalue �1 = 7,

we solve

(A�7I)~x = ~0 or


2� 7 5

6 1� 7

� 
x1
x2

�
=


0
0

�
)


�5 5
6 �6

� 
x1
x2

�
=


0
0

�

or �5x1 + 5x2 = 0, 6x1 � 6x2 = 0. Both equations imply that x1 = x2 so a typical

eigenvector


x1
x2

�
=


x2
x2

�
. So, for example, setting x2 = 1, ~x =


1
1

�
is an

eigenvector of A corresponding to eigenvalue �1 = 7. (CHECK!)
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REMINDER: A =


2 5
6 1

�
has eigenvalues 7, �4.

I An eigenvector ~x = [x1, x2]t corresponding to eigenvalue �2 = �4
satisfies (A+ 4I)~x = ~0 or


2 + 4 5

6 1 + 4

� 
x1
x2

�
=


0
0

�
)


6 5
6 5

� 
x1
x2

�
=


0
0

�
.

So we have two equations which are the same:
6x1 + 5x2 = 0 ) x1 = � 5

6x2. So a typical eigenvector is
x1
x2

�
=


� 5

6x2
x2

�
. So, for example, taking x2 = 6 we get the

eigenvector

~x =


�5
6

�

Dr. Erwin George, Dept. of Mathematics MATH1134
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,! EXAMPLE 3: Find all eigenvalues and, for each eigenvalue, a

corresponding eigenvector for A =

2

4
2 0 0
�4 �5 0
1 0 4

3

5.

7! ANSWER: Because A� �I is a (lower) triangular matrix, the
determinant is easy to compute: being just the product of the
entries on the main diagonal (it will NOT always be so easy; see
EXAMPLE 4 next). So 0 = det(A� �I) =

������

2� � 0 0
�4 �5� � 0
1 0 4� �

������
) (2� �)(�5� �)(4� �) = 0.

So clearly the three eigenvalues are

�1 = 2,

�2 = �5, and

�3 = 4.
Dr. Erwin George, Dept. of Mathematics MATH1134
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,! Next, we find an eigenvector corresponding to eigenvalue �1 = 2: We seek
~x = [x1, x2, x3]T such that (A� 2I)~x = ~0, or equivalently

2

4
0 0 0
�4 �7 0
1 0 2

3

5

2

4
x1
x2
x3

3

5 =

2

4
0
0
0

3

5 .

This system is already in (lower) triangular form, so there is no real need for Gaussian
elimination. So, other than the first row which just tells us 0 = 0, we have two

equations: (1) x1 + 2x3 = 0) x1 = �2x3 and (2) �4x1 � 7x2 = 0) x2 = � 4
7 x1 .

But we use the previous equation, x1 = �2x3, to further simplify the last result to

x2 = 8
7 x3 . So a typical eigenvector is

~x =

2

4
x1
x2
x3

3

5 =

2

4
�2x3

8
7 x3
x3

3

5 = x3

2

4
�2

8
7
1

3

5 .

So, for example, when x3 = 7, an eigenvector of A corresponding to eigenvalue �1 = 2
is 2

4
�14

8
7

3

5 . CHECK!

Dr. Erwin George, Dept. of Mathematics MATH1134
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,! Next, we find an eigenvector corresponding to eigenvalue �2 = �5:
We seek ~x = [x1, x2, x3]T such that (A+ 5I)~x = ~0, or equivalently

2

4
7 0 0

�4 0 0
1 0 9

3

5

2

4
x1
x2
x3

3

5 =

2

4
0
0
0

3

5 .

This system is already in (lower) triangular form, so there is no real need

for Gaussian elimination. The first two equations state that x1 = 0 and

the last equation x1 + 9x3 = 0 ) x3 = 0 . So a typical eigenvector is

~x =

2

4
x1
x2
x3

3

5 =

2

4
0
x2
0

3

5 = x2

2

4
0
1
0

3

5 .

So, for example, when x2 = 1, an eigenvector of A corresponding to
eigenvalue �2 = �5 is

2

4
0
1
0

3

5 . CHECK!

Dr. Erwin George, Dept. of Mathematics MATH1134
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,! Finally, we find an eigenvector corresponding to eigenvalue �3 = 4:
We seek ~x = [x1, x2, x3]T such that (A� 4I)~x = ~0, or equivalently

2

4
�2 0 0
�4 �9 0
1 0 0

3

5

2

4
x1
x2
x3

3

5 =

2

4
0
0
0

3

5 .

This system is already in (lower) triangular form, so there is no real need

for Gaussian elimination. The first and last equations state that x1 = 0

and the second equation �4x1 � 9x2 = 0 ) x2 = 0 . So a typical
eigenvector is

~x =

2

4
x1
x2
x3

3

5 =

2

4
0
0
x3

3

5 = x3

2

4
0
0
1

3

5 .

So, for example, when x3 = 1, an eigenvector of A corresponding to
eigenvalue �3 = 4 is 2

4
0
0
1

3

5 . CHECK!

Dr. Erwin George, Dept. of Mathematics MATH1134
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,! EXAMPLE 4: Find all eigenvalues and corresponding eigenvectors

for A =

2

4
0 0 �2
1 2 1
1 0 3

3

5.

7! ANSWER: Using cofactor expansion along the first row,
0 = det(A� �I) =

������

�� 0 �2
1 2� � 1
1 0 3� �

������
= ��[(2� �)(3� �)� 1(0)]�0[3� �� 1]�2[1(0)� (2� �)]

= ��(�2 � 5�+ 6)� 0� 2(�� 2) = ��3 + 5�2 � 8�+ 4 = 0 )

�3 � 5�2 + 8�� 4 = 0 or (�� 1)(�� 2)2 = 0.

So the two distinct eigenvalues of A are �1 = 1 and �2 = 2 .

,! NOTE A is 3⇥ 3 and we have fewer than 3 distinct eigenvalues (however, if we
count an eigenvalue as often as its multiplicity, we still get 3). There is the
danger then that we will have only two families of linearly independent
eigenvectors [see 3 pages after this for discussion of linear independence] . . .
in fact, you will see next that we still get 3 distinct families of linearly
independent eigenvectors in this case (but that does not always happen!).

Dr. Erwin George, Dept. of Mathematics MATH1134
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,! Next, we find an eigenvector corresponding to eigenvalue �1 = 1: We seek
~x = [x1, x2, x3]T such that (A� 1I)~x = ~0, or equivalently

2

4
�1 0 �2
1 1 1
1 0 2

3

5

2

4
x1
x2
x3

3

5 =

2

4
0
0
0

3

5 .

We use Gaussian elimination: R3 7! R3 + R1 and R2 7! R2 + R1 lead to the
equivalent (upper-triangular) system

2

4
�1 0 �2
0 1 �1
0 0 0

3

5

2

4
x1
x2
x3

3

5 =

2

4
0
0
0

3

5 .

So, other than the last row which just tells us 0 = 0, we have two equations: (1)

x2 � x3 = 0) x2 = x3 and (2) �x1 � 2x3 = 0) x1 = �2x3 .

So a typical eigenvector is ~x =

2

4
x1
x2
x3

3

5 =

2

4
�2x3

x3
x3

3

5 = x3

2

4
�2
1
1

3

5. So, for

example, when x3 = 1, an eigenvector of A corresponding to eigenvalue �1 = 1 is
2

4
�2
1
1

3

5 (CHECK!).

Dr. Erwin George, Dept. of Mathematics MATH1134
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,! Next, we seek eigenvectors corresponding to eigenvalue �2 = 2 (of multiplicity

2): We seek ~x = [x1, x2, x3]T such that (A� 2I)~x = ~0, or equivalently2

4
�2 0 �2
1 0 1
1 0 1

3

5

2

4
x1
x2
x3

3

5 =

2

4
0
0
0

3

5 .

We use Gaussian elimination: R3 7! R3 + 1
2R1 and R2 7! R2 + 1

2R1 lead to the
equivalent (upper-triangular) system

2

4
�2 0 �2
0 0 0
0 0 0

3

5

2

4
x1
x2
x3

3

5 =

2

4
0
0
0

3

5 .

The last two rows tell us 0 = 0, and the first row says: �2x1 � 2x3 = 0) x1 = �x3
(and x2 is independent of x1 and x3!). So a typical eigenvector is

~x =

2

4
x1
x2
x3

3

5 =

2

4
�x3
x2
x3

3

5 =

2

4
�x3

0
x3

3

5+

2

4
0
x2
0

3

5 = x3

2

4
�1
0
1

3

5+ x2

2

4
0
1
0

3

5. For

example, when x3 = 1 and x2 = 0, an eigenvector of A corresponding to eigenvalue

�2 = 2 is

2

4
�1
0
1

3

5 (CHECK!). And when x3 = 0 and x1 = 1 an eigenvector of A

corresponding to eigenvalue �2 = 2 is

2

4
0
1
0

3

5 (CHECK!).

Dr. Erwin George, Dept. of Mathematics MATH1134
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QUICK REVIEW OF LINEARLY INDEPENDENT VECTORS

,! Recall a linear combination of the (known) vectors
{~v1,~v2, . . . ,~vn} is simply any (finite) sum k1 ~v1 + k2 ~v2 + . . .+ kn ~vn
where k1, k2, . . . , kn are scalars.

,! For known vectors {~v1,~v2, . . . ,~vn}, the vector equation

k1 ~v1 + k2 ~v2 + . . .+ kn ~vn = ~0 (2)

always has the solution k1 = 0, k2 = 0, . . . kn = 0. If this is the
only solution, the vectors {~v1,~v2, . . . ,~vn} are said to be linearly
independent. If there are other solutions (where at least one
ki 6= 0, i = 1, . . . , n) then the vectors {~v1,~v2, . . . ,~vn} are said to be
linearly dependent.

 EQUIVALENT DEFINITIONS: (a) {~v1,~v2, . . . ,~vn} are linearly
independent if none of the vectors can be written as a linear
combination of the others.

(b) {~v1,~v2, . . . ,~vn} are linearly dependent if at least one of the
vectors can be written as a linear combination of the others.

Dr. Erwin George, Dept. of Mathematics MATH1134
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,! A set containing only 2 vectors {~v1,~v2} is linearly dependent if and
only if one vector is a scalar multiple of the other. And if not, the
set is linearly independent.

,! For example, in R4 the vectors ~v1 = (�4, 1, 0, 3),
~v2 = (1,�2, 3,�4), and ~v3 = (�5,�4, 9,�6) are linearly
dependent since 2~v1 + 3~v2 � ~v3 = ~0 (CHECK!)

,! In R3, ~v1 = (1, 0, 0), ~v2 = (0, 1, 0), and ~v3 = (0, 0, 1) are
obviously(???) linearly independent. But if we add the vector
~v4 = (�3, 4, 7) to the set, it becomes linearly dependent since
~v4 = �3~v1 + 4~v2 + 7~v3.

,! One way to check if a set of vectors {~v1,~v2, . . . ,~vn} is linearly
independent (or linearly dependent) is to try to solve the vector
equation

k1 ~v1 + k2 ~v2 + . . .+ kn ~vn = ~0

and see if k1 = 0, k2 = 0, . . . , kn = 0 is the only solution or if
there are other (infinitely many) solutions.

Dr. Erwin George, Dept. of Mathematics MATH1134
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,! EXAMPLE 5: Confirm that the three eigenvectors obtained in

EXAMPLE 4, ~v1 =

2

4
�2
1
1

3

5 , ~v2 =

2

4
�1
0
1

3

5 , and

~v3 =

2

4
0
1
0

3

5 are

really linearly independent.

,! ANSWERS: We seek scalars k1, k2, and k3 such that

k1~v1 + k2~v2 + k3~v3 = ~0, or equivalently
2

4
�2k1 � k2

k1 + k3
k1 + k2

3

5 =

2

4
0
0
0

3

5
or

2

4
�2 �1 0
1 0 1
1 1 0

3

5

2

4
k1
k2
k3

3

5 =

2

4
0
0
0

3

5 .

 NOTE the coe�cient matrix above in red is simply made up of ~v1, ~v2, and ~v3
as column vectors. This will ALWAYS be the case when solving an equation of
the form Equation (2) for k1, . . . , kn.

Using Gaussian elimination on this system, we do R1 ! R3 THEN R2 7! R2� R1
and R3 7! R3 + 2R1 to get the equivalent system

2

4
1 1 0
0 �1 1
0 1 0

3

5

2

4
k1
k2
k3

3

5 =

2

4
0
0
0

3

5

Dr. Erwin George, Dept. of Mathematics MATH1134



Eigenvalues and Eigenvectors
Applications

Vector/Matrix Functions of a Single Variable
Quick Review of Linearly Independent Eigenvectors

REMINDER

2

4
1 1 0
0 �1 1
0 1 0

3

5

2

4
k1
k2
k3

3

5 =

2

4
0
0
0

3

5

Next, R3 7! R3 + R2 leads to
2

4
1 1 0
0 �1 1
0 0 1

3

5

2

4
k1
k2
k3

3

5 =

2

4
0
0
0

3

5 .

With the system now in upper-triangular form, we see that the only
solution is k1 = 0, k2 = 0, and k3 = 0.

So, the three eigenvectors

~v1 =

2

4
�2
1
1

3

5 , ~v2 =

2

4
�1
0
1

3

5 , and

~v3 =

2

4
0
1
0

3

5 from EXAMPLE 4

ARE linearly independent as claimed earlier.
Dr. Erwin George, Dept. of Mathematics MATH1134
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,! EXAMPLE 6: Are the vectors ~v1 =

2

4
1
�2
3

3

5, ~v2 =

2

4
5
6
�1

3

5, and

~v3 =

2

4
3
2
1

3

5 linearly independent or linearly dependent?

,! ANSWER: As we saw in the previous example, this amounts to

solving the system A~k = ~0, where the columns of A are simply ~v1,
~v2, and ~v3:

2

4
1 5 3
�2 6 2
3 �1 1

3

5

2

4
k1
k2
k3

3

5 =

2

4
0
0
0

3

5

R3 7! R3� 3R1 and R2 7! R2 + 2R1 leads to the equivalent system
2

4
1 5 3
0 16 8
0 �16 �8

3

5

2

4
k1
k2
k3

3

5 =

2

4
0
0
0

3

5
R3 7! R3 + R2

⇠

2

4
1 5 3
0 16 8
0 0 0

3

5

2

4
k1
k2
k3

3

5 =

2

4
0
0
0

3

5 .

The second line says k2 = � 1
2k3 and the first line says

k1 = �5k2 � 3k3 = �5(� 1
2k3)� 3k3 ) k1 = � 1

2k3 .

Dr. Erwin George, Dept. of Mathematics MATH1134
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So a typical solution vector is

~k =

2

4
k1
k2
k3

3

5 =

2

4
� 1

2k3
� 1

2k3
k3

3

5 = k3

2

4
� 1

2
� 1

2
1

3

5 .

,! So there are infinitely many solutions. This is all that’s important - that
k1 = 0, k2 = 0, and k3 = 0 is NOT the only solution. Hence the given vectors

~v1 =

2

4
1
�2
3

3

5, ~v2 =

2

4
5
6
�1

3

5, and ~v3 =

2

4
3
2
1

3

5 are linearly dependent.

,! ALTERNATIVE TESTS FOR LINEAR INDEPENDENCE Recall that the
following statements are equivalent (i.e., if one is true the others are true and if

one is false the others are false): [1] det(A) 6= 0, [2] A~x = ~b always has a

unique solution ~x for given A and ~b, and [3] A is invertible (or non-singular).
Thus another way to test whether a set of n vectors S in Rn (or more generally
in an n-dimensional vector space) is linearly independent is to form the matrix
A whose columns (or rows) are the n vectors in S . If A is invertible or,
equivalently, det(A) 6= 0 (probably the easiest to check) or, equivalently,

A~x = ~b has only one solution vector for any ~b, then the set of vectors S is
linearly independent. Otherwise, it is linearly dependent.

Dr. Erwin George, Dept. of Mathematics MATH1134
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NOTE

In this Applications section, the only part
that is important for MATH1134 is the
subsection on diagonalisation of a matrix.
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Powers of a Matrix Part 1

I If you know A~x = �~x , observe that multiplying both sides of the
equation on the left by A (and using the laws of matrix algebra)
leads to:

A(A~x) = A(�~x) ) A2~x = �(A~x) = �(�~x) = �2~x .

Similarly, multiplying both sides of A2~x = �2~x on the left by A
leads to A3~x = �3~x. In general,

An~x = �n~x , n = 1, 2, 3, 4, . . . ,

where A has eigenvalue � with corresponding eigenvector ~x .

I Another way to think about this is as follows: If A has eigenvalue �
with corresponding eigenvector ~x, then An has eigenvalue �n with
the SAME corresponding eigenvector ~x.
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,! EXAMPLE 7: Recalling from EXAMPLE 4 that

2

4
0 0 �2
1 2 1
1 0 3

3

5

2

4
�1
0
1

3

5 = 2

2

4
�1
0
1

3

5 ,

find

2

4
0 0 �2
1 2 1
1 0 3

3

5
5 2

4
�1
0
1

3

5 without doing any

matrix-vector multiplications.
2

4
0 0 �2
1 2 1
1 0 3

3

5
5 2

4
�1
0
1

3

5 = 25

2

4
�1
0
1

3

5 =

2

4
�32

0
32

3

5 .

You can also try this the long way to confirm you have the
correct answer!
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Diagonalisation of a Square Matrix

,! KEY DEFINITIONS: A square matrix A is diagonalisable if there
exists an invertible matrix P such that P�1AP is a diagonal matrix
(call it D). The matrix P is said to diagonalise A.

,! KEY RESULT: An⇥n is diagonalisable if and only if A has n linearly
independent eigenvectors. (So not all matrices are diagonalisable
- see examples later).

,! HOW TO DIAGONALISE A MATRIX An⇥n:

1. Find n linearly independent eigenvectors for A, ~p1, ~p2, . . . , ~pn.
2. Form the matrix P with ~p1, ~p2, . . . , ~pn as its columns.

3. The matrix P�1AP will be diagonal, of the form

D =

2

6664

�1 0 0 . . . 0
0 �2 0 . . . 0
...

...
0 0 . . . 0 �n

3

7775
, where �i is the eigenvalue of A

corresponding to eigenvector ~pi (i = 1, 2, . . . , n).
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,! Of course, step 1 in the method might not be possible - in which case the
matrix is not diagonalisable. It will be obvious while looking for eigenvalues and
eigenvectors of an n ⇥ n matrix when it does NOT have n linearly independent
eigenvectors.

,! EXAMPLE 8: Recalling from EXAMPLE 2 that A =


2 5
6 1

�
has

eigenvalue �1 = 7 with corresponding eigenvector ~p1 =


1
1

�
and eigenvalue

�2 = �4 with corresponding eigenvector ~p2 =


�5
6

�
, then a matrix P which

diagonalises A is

P =


1 �5
1 6

� ✓
or P =


�5 1
6 1

�◆
.

P�1 =
1

det(P)


6 5
�1 1

�
=

1

11


6 5
�1 1

� ✓
or P�1 = �

1

11


1 �1
�6 �5

�◆
.

So we expect P�1AP =


7 0
0 �4

� ✓
or P�1AP =


�4 0
0 7

�◆
.

Dr. Erwin George, Dept. of Mathematics MATH1134
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CHECK:

P�1AP = 1
11


6 5

�1 1

� 
2 5
6 1

� 
1 �5
1 6

�
=

1

11


42 35
4 �4

� 
1 �5
1 6

�
=

1

11


77 0
0 �44

�

=


7 0
0 �4

�
as expected.

I’ll leave you to check the other case, in which we change the order of the
columns of P :

P�1AP = � 1

11


1 �1

�6 �5

� 
2 5
6 1

� 
�5 1
6 1

�
=


�4 0
0 7

�
.

I KEY RESULT An n ⇥ n matrix with n di↵erent eigenvalues is
diagonalisable (since it is guaranteed to have n linearly independent
eigenvectors). Problems only arise if the matrix has one or more
repeated eigenvalue(s). In that case, it might or might not be
diagonalisable . (See the following 2 examples).
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,! EXAMPLE 9: From EXAMPLE 4 with A =

2

4
0 0 �2
1 2 1
1 0 3

3

5 we found

eigenvalues �1 = 1 with corresponding eigenvector ~p1 =

2

4
�2
1
1

3

5 and

eigenvalue �2 = 2 of multiplicity 2 with two corresponding linearly

independent eignvectors ~p2 =

2

4
�1
0
1

3

5 and ~p3 =

2

4
0
1
0

3

5.

So with P =

2

4
�2 �1 0
1 0 1
1 1 0

3

5 we expect P�1AP =

2

4
1 0 0
0 2 0
0 0 2

3

5.

Check P�1 =

2

4
�1 0 �1
1 0 2
1 1 1

3

5 and

P�1AP =

2

4
�1 0 �1
1 0 2
1 1 1

3

5

2

4
0 0 �2
1 2 1
1 0 3

3

5

2

4
�2 �1 0
1 0 1
1 1 0

3

5

=

2

4
�1 0 �1
2 0 4
2 2 2

3

5

2

4
�2 �1 0
1 0 1
1 1 0

3

5 =

2

4
1 0 0
0 2 0
0 0 2

3

5.
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,! EXAMPLE 10: Is the matrix A =

2

4
3 1 0
0 3 0
0 0 4

3

5 diagonalisable? If

so, diagonalise it.

,! ANSWER: First we find the eigenvalues: we solve
det(A� �I ) = 0 )

������

3� � 1 0
0 3� � 0
0 0 4� �

������
= (3� �)2(4� �) = 0

so the eigenvalues are �1 = 3 (of multiplicity 2) and �2 = 4.

I We need only investigate the eigenvector(s) of �1 = 3 to see if the
matrix is diagonalisable (WHY?)

So we seek ~x = [x1, x2, x3]T such that (A� 3I)~x = ~0, or equivalently
2

4
0 1 0
0 0 0
0 0 1

3

5

2

4
x1
x2
x3

3

5 =

2

4
0
0
0

3

5
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REMINDER:

2

4
0 1 0
0 0 0
0 0 1

3

5

2

4
x1
x2
x3

3

5 =

2

4
0
0
0

3

5

I This system is already in (upper) triangular form so we can solve
directly:

• The first row states that x2 = 0 .

• The second row states that 0 = 0 and

• The third row states that x3 = 0 .

So a typical eigenvector corresponding to eigenvalue �1 = 3 is2

4
x1
x2
x3

3

5 =

2

4
x1
0
0

3

5 = x1

2

4
1
0
0

3

5.

Hence there is only one family of eigenvectors and we cannot find 2

linearly independent eigenvectors corresponding to eigenvalue �1 = 3

(compare to EXAMPLE 9). Therefore A is NOT DIAGONALISABLE (it

will not have 3 linearly independent eigenvectors).
Dr. Erwin George, Dept. of Mathematics MATH1134
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Powers of a Matrix Part 2

,! First observe that if D is an n ⇥ n diagonal matrix with its only
non-zero entries being the diagonal entries d11, d22, . . ., dnn, then
for any positive integer k = 1, 2, 3, . . ., Dk is also a diagonal matrix
with its only non-zero entries being the diagonal entries dk

11, d
k
22,

. . ., dk
nn (in that order).

,! SKETCH OF PROOF: I will show the result for D2 and it will then be obvious

that the same argument works for D(D2) = D3, and D(D3) = D4 and so on.

 Recall that (D2)ij =
nX

k=1

DikDkj. Furthermore, recall Dik = 0 if i 6= k. Likewise

Dkj = 0 if k 6= j . Therefore, the only time that
nP

k=1
DikDkj could involve

non-zero terms is when i = k = j . So we can first conclude that if i 6= j ,

(D2)ij = 0 so that D2 is a diagonal matrix.

 Next, if i = j then, recalling DikDkj = 0 unless we also have k = i (= j), then
the expression above for (D2)ii can be simplified as follows:

(D2)ii =
nX

k=1

DikDki = DiiDii = D2
ii or, equivalently d2

ii as expected.
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,! Next, if A has been diagonalised by P , so that D = P�1AP ,

observe that A = PDP�1 . Furthermore

A2 = (PDP�1)(PDP�1) = PD(P�1P)DP�1 = PDIDP�1 = PDDP�1 = PD2P�1.

,! Similarly,

A3 = A(A2) = PDP�1(PD2P�1) = PD(P�1P)D2P�1 = . . . = PD3P�1

and

A4 = A(A3) = PDP�1(PD3P�1) = PD(P�1P)D3P�1 = . . . = PD4P�1

and so on . . ..

,! KEY RESULT Generally, if P diagonalises A, so that D = P�1AP
is a diagonal matrix, then for any positive integer k = 1, 2, 3, . . .,

Ak = PDkP�1.
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,! EXAMPLE 11: Recall from EXAMPLE 9 that for matrix

A =

2

4
0 0 �2
1 2 1
1 0 3

3

5 we have matrices P =

2

4
�2 �1 0
1 0 1
1 1 0

3

5 and

P�1 =

2

4
�1 0 �1
1 0 2
1 1 1

3

5 such that P�1AP =

2

4
1 0 0
0 2 0
0 0 2

3

5. Check

that A = PDP�1 and then calculate A5.

PDP�1 =

2

4
�2 �1 0
1 0 1
1 1 0

3

5

2

4
1 0 0
0 2 0
0 0 2

3

5

2

4
�1 0 �1
1 0 2
1 1 1

3

5 =

2

4
�2 �2 0
1 0 2
1 2 0

3

5

2

4
�1 0 �1
1 0 2
1 1 1

3

5 =

2

4
0 0 �2
1 2 1
1 0 3

3

5
as expected.
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REMINDER:

A = PDP�1 =

2

4
�2 �1 0
1 0 1
1 1 0

3

5

2

4
1 0 0
0 2 0
0 0 2

3

5

2

4
�1 0 �1
1 0 2
1 1 1

3

5 =

2

4
0 0 �2
1 2 1
1 0 3

3

5.

Meanwhile, A5 = PD5P�1 =
2

4
�2 �1 0
1 0 1
1 1 0

3

5

2

4
1 0 0
0 2 0
0 0 2

3

5
5 2

4
�1 0 �1
1 0 2
1 1 1

3

5 =

2

4
�2 �1 0
1 0 1
1 1 0

3

5

2

4
1 0 0
0 32 0
0 0 32

3

5

2

4
�1 0 �1
1 0 2
1 1 1

3

5 =

2

4
�2 �32 0
1 0 32
1 32 0

3

5

2

4
�1 0 �1
1 0 2
1 1 1

3

5 =

2

4
�30 0 �62
31 32 31
31 0 63

3

5 (CHECK!)

Dr. Erwin George, Dept. of Mathematics MATH1134



Eigenvalues and Eigenvectors
Applications

Vector/Matrix Functions of a Single Variable

Matrix/Vector Functions of a Single Variable

,! Recall that we can have vector functions of single variable, t (for
example). Such as

~r(t) = (t3 � 4t)~i + sin t~j + e2t~k =

2

4
t3 � 4t
sin t
e2t

3

5 .

,! We then di↵erentiate or integrate such vector functions by
di↵erentiating or integrating each term individually:

~r 0(t) = ~̇r(t) =

2

4
3t2 � 4
cos t
2e2t

3

5 .

Z
~r(t) dt =

2

4

R
(t3 � 4t) dtR

sin t dtR
e2t dt

3

5 =

2

4
1
4 t

4 � 2t2 + C1

� cos t + C2
1
2 e

2t + C3

3

5 =

2

4
1
4 t

4 � 2t2

� cos t
1
2 e

2t

3

5+

2

4
C1

C2

C3

3

5

where C1, C2, and C3 are constants.
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,! And the old familiar rules from di↵erentiating/integrating of simple
functions carry over to di↵erentiating/integrating of vector
functions. For example, both operations are linear with respect to
scalar multiplication and vector addition. So

d

dt
(↵~v(t)) = ↵

d

dt
(~v(t)) ,

d

dt

⇣
~a(t) + ~b(t)

⌘
=

d

dt
(~a(t)) +

d

dt

⇣
~b(t)

⌘
;

and
Z

(↵~v(t)) dt = ↵

Z
(~v(t)) dt,

Z ⇣
~a(t) + ~b(t)

⌘
dt =

Z
(~a(t)) dt+

Z ⇣
~b(t)

⌘
dt;

for ↵ a scalar.
Other (somewhat) familiar rules are

I d
dt

⇣
~a(t) · ~b(t)

⌘
= d

dt (~a(t)) · ~b(t) +~a(t) · d
dt (

~b(t)).

I d
dt

⇣
~a(t)⇥ ~b(t)

⌘
= d

dt (~a(t))⇥ ~b(t) +~a(t)⇥ d
dt (

~b(t)).

I d
dt (f (t)~a(t)) =

d
dt (f (t))~a(t) + f (t) d

dt (~a(t)), where f (t) is a normal
(scalar) function.
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,! Everything said previously about vector functions
generalises in the natural way to more general matrix

functions (except for the results involving the dot product
and cross product, which are not defined for non-vector
matrices). So to di↵erentiate or integrate a matrix A(t),
just di↵erentiate or integrate each entry.

I E.g. A(t) =


4t3 + 2t2 cos 5t

4 3e12t

�
, then

d

dt

(A(t)) = A

0(t) =


12t2 + 4t �5 sin 5t

0 36e12t

�
, and

Z
A(t) dt =


t

4 + 2
3t

3 1
5 sin 5t

4t 1
4e

12t

�
+


C1 C2

C3 C4

�

where C1, C2, C3, and C4 are constants.
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I We again, of course, have linearity of matrix
di↵erentiation and integration with respect to scalar

multiplication and matrix addition, but also with respect
to matrix multiplication by a constant matrix. If C is an
appropriately-sized (constant) matrix,

d

dt

(CA(t)) = C

d

dt

(A(t)) and

Z
(CA(t)) dt = C

Z
(A(t)) dt.

I And again with regard to di↵erentiation and matrix

multiplication, matrix functions mimic scalar functions:

d

dt

(A(t)B(t)) = A

0(t)B(t) + A(t)B 0(t).

 NOTE the order of A(t) and B(t) in the formula above is

important since matrix multiplication is NOT commutative.

Dr. Erwin George, Dept. of Mathematics MATH1134
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