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,! We now look at the population dynamics of infectious diseases.

,! There is an interesting historical background to this topic in section
10.1 of J.D. Murray’s Mathematical Biology: I. An Introduction,
Third Edition.

,! Mathematical modelling of diseases in the “modern” era could be
said to begin with Hamer and Ross (the latter winning a Nobel
prize in 1902 for demonstrating that malaria was transmitted by
mosquitoes) who used mathematical models to test their theories.

,! The other significant development was the 1927 publication of a
paper by William O. Kermac and Anderson G. McKendrick, A
Contribution to the Mathematical Theory of Epidemics, in which
they outlined the SIR model we will look at later. The model in
that classic paper was the basis for much further work on the topic.

I Now the mathematical modelling of the spread of infectious
diseases is a flourishing field and informs public health policy.

3 / 39



Introduction
SIS Epidemic
SIR Epidemic

Conclusion

Some Key Terminology

,! ENDEMIC diseases are constantly (or usually) present in a
population.

,! EPIDEMIC diseases are prevalent in a population only at certain
times or under certain circumstances (hence are NOT endemic).

,! An individual’s disease status1 could, broadly speaking, be:

� Susceptible if they can get the disease;

� Latent or exposed if they are infected but not yet infectious;

� Infectious or infective if they can infect others;

� Removed if they are no longer infectious, whether due to acquired
immunity, quarantine (isolation), or death;

� Carrier if they are infectious for long periods but show no symptoms.

,! A disease is CONTAGIOUS if it is spread by contact between an
infected and a susceptible individual.

1
We will only look at the disease statuses highlighted in yellow above and discuss models which predict how

the proportion of a population with each disease status changes with time.
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Some Key Terminology, continued

,! Infective diseases fall into two main categories dependent on the
(original) infective agent:

A. MICROPARASITIC: These are diseases caused by very small
infectious agents - too small to be seen with the naked eye. These
agents can be viruses (e.g., Measles, Ebola, Zika), bacteria (e.g.
Tuberculosis, Streptococcus, Escheria [E.] coli), protozoan (e.g.,
Malaria, Giardia), etc. Here, essentially someone either has the
disease or does not have the disease.

B. MACROPARASITIC: These are diseases caused by larger
infectious agents - large enough to be seen with the naked eye.
These agents can be helminths (e.g. tapeworms, nematodes),
arthopods (e.g., ticks, lice), etc. Here, the level of infestation might
be relevant to the progress of the disease.
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Some Key Terminology, continued

,! The PREVELANCE of a disease is the proportion of the
population infected.

,! The INCIDENCE of an infectious disease is the rate at which
infection occurs.

,! A COMPARTMENTAL MODEL is often used to model the

“flow” of diseases within a population.
I Each disease status is assigned a separate compartment within

which the number of individuals typically changes over time.
I The “flow” of individuals from one compartment to another is

indicated by arrows often accompanied by the transition rates

between those compartments. An arrow leaving or entering a

compartment, respectively, indicates a negative or positive,

respectively, rate of change of the number of individuals in

that compartment.
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,! For example,

S ! I ! R or S ! I ! R

is a compartment model (omitting the rates of transition between
compartments) which indicates that in a population, individuals are
first susceptible, then some are infected, then some infected people
are removed.

7! Other key terminology will be defined when needed.

I One assumption in the Kermac-McKendrick model and other early
models is that population is well-mixed and the likelihood of any
two individuals coming into contact with each other follows the law
of mass action. This would indicate that each person in the
population is equally likely to meet someone else in the population.
While this is a reasonable first approximation, it is typically not the
case in reality (for example, think about the relatively small number
of and largely predictable/fixed group of people many people
encounter in a typical day) and hence this assumption is usually
refined to be more realistic in later models.
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SIS Epidemic - Introduction

,! We will model a disease in which each individual in a population
can either be Susceptible (S), Infected (I) or can recover and
immediately be Susceptible (S) again.

 This can be the case with diseases such as tuberculosis or
gonnorrhoea (bacterial), or the common cold or the flu (viruses), in
which people who recover are frequently not immune and could get
that disease again if they are not careful.

,! We will however briefly begin by looking at the simpler model in
which we assume that an infected person remains infected
indefinitely. This is representative of what happens near the start of
an infectious outbreak but clearly is not a realistic model for the
longer-term dynamics of the disease. Thus the model we consider
first is

S ! I.
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SI Epidemic (The Simple Epidemic)

,! Let S(t) be the number of individuals who are susceptible at time t
and I(t) be the number of individuals who are infected at time t.

,! In this simple epidemic model, we assume that the overall
population is constant, call it N, and that everyone is either
susceptible or infected. So

S(t) + I(t) = N.

,! One could now derive a form of the di↵erential equation(s) directly
using this conservation law for the total population:

dS

dt
+

dI

dt
=

dN

dt
= 0 ) dS

dt
= �dI

dt
.

I The problem is that this is one di↵erential equation with two
unknown functions, so it would be helpful to have a better idea of
what dS

dt or its negative dI
dt looked like.
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,! In general, if we make the simplifying assumption that both dS
dt and

its negative dI
dt depended only on S and I (and not directly on t),

then
dS

dt
= �F (S , I),

dI

dt
= F (S , I)

where, based on earlier definitions, F (S , I) is known as the

incidence

of the disease.

� Clearly, we are assuming here that F (S , I) is a positive function
given the direction of the arrow in the compartment model S ! I.

,! We will assume that the rate of infection follows the law of mass
action with proportionality constant �: Thus

dS

dt
=

� �SI and
dI

dt
= �SI

I NOTE that last set of ODEs could also be summarised by the
following compartment model diagram:

S
�SI��! I
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,! The constant � is called the (pairwise) infectious contact

rate and is the rate of infection per infectious and per susceptible
individual.

,! More generally, the incidence of the disease, F (S , I) is often given
as a function of I multiplied by S :

F (S , I) = �(I)S

where �(I) is called the force of infection. So in the current
SI model, we have taken the simplest, non-constant force of
infection, a linear functon �I.

,! Crucially, the conservation law S(t) + I(t) = N means that we can
write one of the functions, S(t) or I(t), in terms of the other and
easily reduce the system of two ODEs to a single ODE.

,! For example, since S(t) = N � I(t)

I
= �I( � I)
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,! This is just a Logistic ODE

dI

dt

= �NI

✓
1� I

N

◆

with

intrinsic growth rate r =

�N

and carrying capacity
K =

N

.

,! Clearly, in the long term, this model predicts that the
entire population will become infectious (the stable
equilibrium solution is I = N , S = 0). This is unrealistic
and is why this model is not relevant for the long-term
progress of a disease.

I Instead, the SIS model is more realistic.
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,! Compared to the SI model, the only additional assumption in the
SIS model is that infectious individuals can recover; but they
acquire no immunity and are immediately again susceptible.

,! We will assume that the rate at which the infected individuals
recover (and become susceptible again) is proportional to the
number of infected individuals with proportionality constant µ.
Hence the compartment model (with rates of transition) is

S
�SI��! I

µI�! S .

and the corresponding system of di↵erential equations is

= µI � � I,
I
= � I � µI.

,! NOTE that, dN
dt = d(S+I)

dt =

dS
dt +

dI
dt = [µI� �SI] + [�SI� µI] =

0,
so as expected the total population N = S(t) + I(t) is a constant.
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,! NOTE again as in the SI case, we can use the fact that S + I = N
to write this as a single ODE for dS

dt or dI
dt . For example, eliminating

S(t) from that equation we come up with the equivalent single ODE

dI

dt
= �I(N � I)� µI = �NI

✓
1� I

N

◆
� µI.

,! At this stage, we have a choice of whether to analyse this SIS
model as a system or as a single equation. I will leave you to
analyse it as a system using the techniques of Lecture 4 and
Lecture 5 and verifying that you come to the same conclusions
that we do when analysing it as a single equation in what follows.

,! First, to reduce the number of parameters, we will
non-dimensionalise the equation (using the 5-step procedure from
Lecture 5).
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REMINDER:
dI

dt
= �I(N � I) � µI = �NI

✓
1 �

I

N

◆
� µI

1. We will non-dimensionalise I(t) and t, calling the new variables x
and ⌧ respectively.

2. Let I( ) = 1 and = 2⌧ .

3.
dI

dt
=

dI

dx

dx

d⌧

d⌧

dt
=

a1
a2

dx

d⌧
= �a1xN

⇣
1� a1

x

N

⌘
� µa1x )

dx

d⌧
= �a2xN

⇣
1� a1

x

N

⌘
� µa2x .

4. At this stage, there are several possible choices for a1 and a2 which
will simplify this equation. We will let a1 = N () x = I

N ) and
a2 =

1
µ () ⌧ = µt) and the dimensionless equation is

dx

d⌧
=

�N

µ
x (1� x)� x
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REMINDER:
dx

d⌧
=

�N

µ
(1 � x) x � x

5. If we let R0 =
�N

µ
then the non-dimensionalised ODE with only

one parameter, R0 is
dx

d⌧
= R0 (1� x) x � x .

,! In these dimensionless variables, x(⌧) = I
N , is just the proportion of

the population that is infected. Hence, the proportion of the
population at time ⌧ which is susceptible is 1 � (⌧ ) and we shall
call it .

,! Given that µ is the rate at which infected people recover (and
become susceptible), then 1/µ is the typical (average) recovery
time (which is the same as the typical time an individual is

infectious). Hence the dimensionless time variable ⌧ = µ =
1/µ

measures time as a proportion of the average recovery time.
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REMINDER:
dx

d⌧
=

�N

µ
(1 � x) x � x = R0 (1 � x) x � x

,! Exercise: Use dimensional analysis to interpret the parameter R0.

I Answer:

Let P be the measure of population, then [µ] = 1/T )
[1/µ] = T , [�] = 1/(PT ) so [�N] = 1/T and is therefore a rate.
Furthermore R0 = (�N)/µ is confirmed as being dimensionless.

� From the view of the equation as a modified Logistic ODE, we
note that �N is the intrinsic growth rate of infective individuals.
Meanwhile 1/µ is the expected (average) length of time an
infective individual remains in that category (and hence can cause
new infections). Therefore the product R0 = (�N)/µ represents the
typical total of new infections caused by an infective individual 2.

� R0 is called the basic/intrinsic reproductive ratio/rate or
infectious contact number for the disease and is a key parameter in
the study of infectious diseases.

2
See Sec. 3.2 of Essential Mathematical Biology by Britton or Example 6.7 of A Primer on

Mathematical Methods in Biolgy by Edelstein-Keshet for alternative routes to the same interpretation of R0
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REMINDER:
dx

d⌧
=

�N

µ
(1 � x) x � x = R0 (1 � x) x � x

,! The equilibrium solutions to this ODE are solutions to

R0x � R0x
2 � x = 0 ) x(R0 � R0x � 1) = 0 )

x = 0 (so y = 1) or x =
R0 � 1

R0
= 1�

1

R0
(so y =

1

R0
).

,! We use calculus to classify these equilibrium solutions:

d

dx
{R0 (1� x) x � x} = R0 � 2R0x � 1.

� Evaluated at x = 0 this derivative is R0 � 1 which is < 0 if R0 < 1 and > 0 if
R0 > 1 so that if R0 < 1 (x = 0, y = 1) is a stable steady state and if R0 > 1
(x = 0, y = 1) is an unstable steady state.

� Evaluated at x = 1� 1
R0

the derivative is �R0 + 1 so if �R0 + 1 < 0 ) R0 > 1

then
⇣
x = 1� 1

R0
, y = 1

R0

⌘
is a stable steady state and if

�R0 + 1 > 0 ) R0 < 1 then
⇣
x = 1� 1

R0
, y = 1

R0

⌘
is an unstable steady state.

19 / 39



Introduction
SIS Epidemic
SIR Epidemic

Conclusion

SI Epidemic
SIS Epidemic

-2 -1.5 -1 -0.5 0
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

x

f(x
)

0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

x
f(x
)

f (x) = R0 (1� x) x � x versus x for the case 0 < 1 (LEFT) and 0 > 1 (RIGHT).
The equilibrium solutions x = 0 and x = 1� 1/R0 are clearly indicated by blue dots.

We see that when R0 < 1 (LEFT) the non-zero equilibrium solution is in the
biologically infeasible region of x < 0. The value of R0 used in the left plot was 0.5,

corresponding with equilibrium x = �1, and the value of R0 used in the right plot was
2, corresponding to equilibrium solution x = 0.5 (and y = 0.5).

20 / 39



Introduction
SIS Epidemic
SIR Epidemic

Conclusion

SI Epidemic
SIS Epidemic

,! In summary then, if 0 = (� )/µ < 1 then the disease-free equilibrium
solution x = 0 (y = 1) is stable while the endemic equilibrium solution
x = 1� 1/R0 (y = 1/R0) is unstable. HOWEVER note in this case that the
endemic equilibrium solution x = 1� 1/R0 (y = 1/R0) is not biologically
realistic since x < 0, so we can ignore this case.

,! Meanwhile, if 0 = (� )/µ > 1 then the disease-free equilibrium solution
x = 0 (y = 1) is unstable while the endemic equilibrium solution x = 1� 1/R0

(y = 1/R0) is stable.

I Thus at the threshold value of 1, the basic reproductive ratio R0 = (�N)/µ
causes a very dramatic shift in the progress of the disease:

� If 0 < 1 then each infected individual infects, on average, fewer than one
other individual hence after an initial time the disease dies out. The disease
cannot “reproduce” fast enough to survive.

� If 0 > 1 then each infected individual infects more than one other individual
hence the disease becomes endemic in the population. The disease
“reproduces” quickly enough to survive in the long term. NOTE that unless R0

is massive or starts growing, there will still remain a certain proportion of the
population which does not get the disease (in this model).

I So the importance of R0 is clear. Much research goes into identifying this type
of critical parameter in more complicated disease models.
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A Few Comments Related to R0

,! If we write
dx

d⌧
=

�N

µ
(1� x) x � x = R0 (1� x) x � x in the

equivalent (CHECK!) form

dx

d⌧
= (R0 � 1)x

✓
1� x

1� 1/R0

◆
,

we recognise it as a Logistic ODE with intrinsic growth rate

r = (R0 � 1) and carrying capacity K = 1� 1/R0

I Thus R0 tells us whether or not the disease will spread and r tells
us how quickly it will do so.
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,! The key di↵erence between this and the SIS model is that infectious
individuals who “recover” either acquire immunity from the disease
or are otherwised no longer capable of catching or transmitting the
disease (they may be dead or quarantined) and are therefore
Removed from the population with regard to the disease progress.

,! This pattern is typical of many chilhood diseases such as smallpox
or measles; once one recovers from the disease, one is immune.
There was also a similar pattern in the early days of the HIV virus
(before medical breakthroughs) since people who got HIV typically
died shortly afterwards hence did not infect others when they were
removed from the disease cycle.

,! If we assume the rate at which individuals are removed from the
infected category is proportional to the population of the infected
category, �I, then the relevant compartment model diagram is

S
�SI��! I

�I�! R .
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REMINDER: S
�SI���! I

�I��! R.

,! The corresponding system of di↵erential equations is

= �� I,
I
= � I � �I,

R
= �I.

,! Observe that, again, the total population is constant:
N = S(t) + I(t) + R(t).

,! We non-dimensionalise as before (I’ll leave the details to you).
Letting

u =
S

N
, v =

I

N
, w =

R

N
, and ⌧ = �t,

the dimensionless equations become

⌧
= � 0 ,

⌧
= ( 0 � 1) ,

⌧
= ,

where 0 = (� )/� is again the intrinsic reproductive rate.
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REMINDER:
du

d⌧
= �R0uv,

dv

d⌧
= (R0u � 1)v,

dw

d⌧
= v

,! One can now use the fact that
N = S(t) + I(t) + R(t) ) u + v + w = 1 to eliminate one of the
variables - for example w - and perform analysis on two of the
variables in a phase plane. This is done in many standard textbooks
on the subject - for example, Britton’s Essential Mathematical

Biology. For variety, we will study the full system of 3 equations.

,! The steady states are obtained by solving

�R0uv = 0, (R0u � 1)v = 0, v = 0.

I The last equation is only ever 0 when v = 0. The first equation is 0
when u = 0 or v = 0 and the second equation is 0 when v = 0 or
u = 1/R0.

I So if v = 0 ALL three equations are 0 so the entire plane v = 0
(the u � w plane) is e↵ectively a steady state. Let us pause to
recover from this shocking news.
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,! At this point, it is worth noting that the region in which we can get
biologically realistic solutions is a simplex (3d planar triangular
region) given by
{(u, v ,w) : 0  u  1, 0  v  1, 0  w  1, u + v + w = 1}. The
intersection of this triagular plane with the plane v = 0 is the line
segment u + w = 1 ) u = 1� w . This is where we expect all of
our feasible steady states to lie.

I Thus there is no feasible steady state in which all three categories,
Susceptible, Infectious, and Removed, co-exist (at least, not with
this model).

,! If you think about this, it makes sense: In the long term, the
disease should be finished and there should only remain either
susceptible people or people who have been removed (immune,
quarantined, dead); there should be no more infectious people left.

I We can measure the size/impact of a disease by measuring the size
of the Removed category, w(⌧), once the steady state (v = 0) has
been achieved.
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,! I will show time plots for several scenarios in which the SIR system
is solved using the fourth order Runge-Kutta method. Initial
conditions will be set so that w = 0 (hence the disease is just
starting out with no removed individuals) and then u will be set to
a large and then small value (so v will be small then large). I will
also consider relatively small and large R0 values less than 1 and
relatively small and large R0 values greater than 1. The table below
summarises the di↵erent combinations of parameters in the
following plots in the order in which the plots are presented:

R0 u0 v0 w0 R0 u0 v0 w0

0.05 0.8 0.2 0 0.05 0.2 0.8 0
0.5 0.8 0.2 0 0.5 0.2 0.8 0
1.5 0.8 0.2 0 1.5 0.2 0.8 0
15 0.8 0.2 0 15 0.2 0.8 0

NOTE time is denoted t in the following plots but should be interpreted
as the dimensionless time ⌧ .
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R0 << 1, u0 = 0.8, v = 0.2 R0 << 1, u0 = 0.2, v = 0.8
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R0 > 1, u0 = 0.8, v = 0.2 R0 > 1, u0 = 0.2, v = 0.8

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

t

u
v
w

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

t

u
v
w

R0 >> 1, u0 = 0.8, v = 0.2 R0 >> 1, u0 = 0.2, v = 0.8

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

t

u
v
w

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

t

u
v
w

30 / 39



Introduction
SIS Epidemic
SIR Epidemic

Conclusion

Disease Control/Eradication/Vaccination

,! The patterns of solutions are largely self-explanatory and
logical. Some highlights are:

I As expected, the steady state for the infectious category
is 0.

I It seems that there is only an epidemic (the number of
infectious individuals grows at least for a time) when
R0 > 1. So again as in the SIS model the value of R0, the
basic reproductive ratio of the diseases, relative to 1
seems important.

I If R0 is su�ciently large, even with a relative small initial
infectious population, the whole population gets the
disease (as measured by the steady state of the Removed
population, w).

7! We will now briefly analyse steady states with the aid of
the Jacobian matrix of the transformation.
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REMINDER:
du

d⌧
= �R0uv,

dv

d⌧
= (R0u � 1)v,

dw

d⌧
= v

,! The Jacobian matrix is

J(u, v ,w) =

0

@
�R0v �R0u 0
R0v R0u � 1 0
0 1 0

1

A

,! So at steady states, when v = 0, the Jacobian is
0

@
0 �R0u 0
0 R0u � 1 0
0 1 0

1

A ) J � �I =

������

�� �R0u 0
0 R0u � 1� � 0
0 1 ��

������

I From this, it is not too di�cult to see that the eigenvalues are
�1 = 0 and �2 = R0u � 1.
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,! Note we did not discuss zero eigenvalues in Lecture 4.
The time progression of the disease in this model is more
interesting than a detailled analysis of steady states, so
for further discussion of this zero eigenvalue see other
sources such as Example 3.2 of Nicholas Britton’s book
Essential Mathematical Biology.

,! If we take u = 1 we have one of the many disease-free
steady states and the eigenvalue �2 = R0u � 1 becomes
�2 = R0 � 1. This steady state is stable if R0 < 1 but
unstable if R0 > 1. This unstable steady state suggests
that the disease may not die out and an epidemic is
possible. This analysis confirms what the earlier set of
graphs of solutions, u, v ,w , versus time showed.
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Disease Control/Eradication/Vaccination
(This is largely a summary of the discussion in Section 3.5 of Nicholas Britton’s

Essential Mathematical Biology)

,! One of the key benefits of modelling the progress of diseases is that
it gives the possibility of enacting policies which can cause the
eradication of or at least control the spread of diseases.

,! We have, for example, seen in the SIS and SIR models that having
the basic reproduction ratio, R0 < 1 can be crucial to suppressing
epidemics and causing a disease to die out quickly, so strategies to
reduce R0 below a value of 1 are among those which can be
deployed to control the spread of an infectious disease.

,! Given that for closed models like the SIR model, 0 = (� )/�,
there are three strategies to reduce R0 and thus control such a
disease.
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R0 = (�N)/�

,! In no particular order, those strategies are:

– Increase �, which is the rate of removal of infectious
individuals from the population. This could be done, for
example, by quarantining infected individuals or culling
infected animals (as was done to cows during the
foot-and-mouth disease epidemic in 2001 in the UK).

– Decrease �, which is the pairwise infectious contact rate.
Again this could be accomplished by quarantining infected
individuals or restricting movement of individuals.

– Decrease the e↵ective value of N. This does NOT mean

killing of the population (although that would essentially

work) but moving more people from the susceptible

population in N into the removed category, with vaccination

being one of the key ways in which this can be accomplished.
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,! We can use knowledge about the value of R0 to determine what
proportion, , of a population would need to be (successfully)
vaccinated to control the growth of a disease or to cause it to die
o↵.

,! NOTE vaccinating a fraction of the (susceptible) population is
equivalent to moving that fraction from the susceptible to the
removed category, leaving the fraction 1� p = of the population
in the susceptible category.

� For example, in an SIR epidemic, the eigenvalue �2 = R0u � 1
would become R0q � 1 corresponding to a steady state of
(u, v ,w) = ( , 0, ) in the disease-free equilibrium.

� An epidemic might occur if that new disease-free steady state is
unstable, meaning R0q � 1 > 0. On the other hand, for it to be a
stable equilibrium, we require
R0q � 1 < 0 ) q < 1/R0 ) 1� p < 1/R0 ) > 1 � 1/ 0.
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� In summary, if we vaccinate at least the proportion
p⇤ > 1� 1/R0 of individuals susceptible to an infectious
disease in a population, we remove the threat of that
disease becoming an epidemic.

,! Here are some sample R0 (hence threshold p⇤) values for
selected infectious diseases (various sources). The data is
largely for developed countries; R0 is typically larger for
developing countries.

Infectious Disease R0 Estimate p⇤
Smallpox 3� 5 0.67� 0.80
Chickenpox 9� 10 0.89� 0.90
Measles 12� 18 0.92� 0.94
Malaria > 100 > 0.99
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End of Section
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,! There are many other disease models one can consider
such as SIRS. See some books on the reading list for this
course for more details. Two other useful sources (books)
are:

I
Mathematical Models in Population Biology and

Epidemiology, second edition, by Fred Brauer and
Carlos Castillo-Chavez (Springer, 2011).

I
Mathematical Models for Communicable

Diseases, by Fred Brauer and Carlos Castillo-Chavez
(SIAM, 2013).

,! Remember again you now have the tools and skills to
explore ANY scenario modelled by a single or system of
first order ordinary di↵erential equations. Go forth and do
so!
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