Develop and post projects 14.1 - 14.5 pp. 715 - 716. Name projects as 14_1.java - 14_5.java. In comments show were is your code. See attached hints. Due time is 05/08/17



Programming Projects
 Writing programs to solve the Programming Projects helps to solidify your understanding of the material and demonstrates how the chapter’s concepts are applied. (As noted in the Introduction, qualified instructors may obtain completed solutions to the Programming Projects on the publisher’s Web site.) 

14.1 Modify the path.java program (Listing 14.2) to print a table of the minimum costs to get from any vertex to any other vertex. This exercise will require some fiddling with routines that assume the starting vertex is always A. 

14.2 So far we’ve implemented graphs as adjacency matrices or adjacency lists. Another approach is to use Java references to represent edges, so that a Vertex object contains a list of references to other vertices that it’s connected to. In a directed graph a reference used this way is especially intuitive because it “points” from one vertex to another. Write a program that implements this scheme. The main() method should be similar to main() in the path.java program (Listing 14.2) so that it creates the graph shown in Figure 14.6 using the same addVertex() and addEdge() calls. It should then display a connectivity table of the graph to prove that the graph is constructed properly. You’ll need to store the weight of each edge somewhere. One approach is to use an Edge class, which stores its weight and the vertex on which it ends. Each vertex then keeps a list of Edge objects—that is, edges that start on that vertex. 

14.3 Implement Floyd’s algorithm. You can start with the path.java program (Listing 14.2) and modify it as appropriate. For instance, you can delete all the shortestpath code. Keep the infinity representation for unreachable vertices. By doing this, you will avoid the need to check for 0 when comparing an existing cost with a newly derived cost. The costs on all possible routes will be less than infinity. You should be able to enter graphs of arbitrary complexity into main().

14.4 Implement the traveling salesman problem described in the “Intractable Problems” section in this chapter. In spite of its intractability, it will have no trouble solving the problem for small N, say 10 cities or fewer. Try a nondirected graph. Use the brute-force approach of testing every possible sequence of cities. For a way to permute the sequence of cities, see the anagram.java program (Listing 6.2) in Chapter 6, “Recursion.” Use infinity to represent nonexistent edges. That way, you won’t need to abort the calculation of a sequence when it turns out that an edge from one city to the next does not exist; any total greater than infinity is an impossible route. Also, don’t worry about eliminating symmetrical routes. Display both ABCDEA and AEDCBA, for example. 

14.5 Write a program that discovers and displays all the Hamiltonian cycles of a weighted, non-directed graph.




