
Assembly Language Programming 	
Purpose 	

The purpose of this assignment is to help you learn about computer architecture, assembly
language programming, and testing strategies. It also will give you the opportunity to learn more
about the GNU/Unix programming tools, especially bash , emacs , gcc209 , and gdb for assembly
language programs. 	

A Desk Calculator Program in Assembly Language 	

Part a: Implement basic functions of dc 	

dc (desk calculator) is a tool on Unix-like operating systems. In its simplest form, dc reads a list
of numbers from the standard input (stdin) and uses a set of command keys to display results of
user-specified operations on the standard output (stdout). 	
	

In dc , the operands (numbers) and operators are added in reverse-polish (also known as postfix)
notation. In this scheme, the operator follows the operands. The following example execution run
explains how dc is used. 	

567

343223

+

p

343790

q 	

dc uses a stack to store numbers in LIFO order (last-in, first-out). Whenever it encounters an
arithmetic operator, it first pops out the last 2 operands from the stack, runs the operation on
those numbers and then pushes the result back into the stack. In the example above, 567 and
343223 are pushed in the stack one after the other. Once the operator '+' is entered, dc first pops
343223 and then 567 from the stack. It then adds the two integers and finally pushes the result
(343790) back in the stack. The command p is used to print the value that sits on the top of the
stack. Please note that p only retrieves the value without popping (this is also known as a peek
operation). The user can either quit the program by entering q or EOF character to the program.
In other words, if the annotated text mentioned above is stored in a file named values.txt then dc
can also be executed in the following manner: 	

$ dc < values.txt 	

which will print the result to the standard output stream as: 	

343790 	

The dc tool supports a number of operators and subsidiary commands which you can study on the
man page. For this assignment, you are required to implement only the following operations. 	

Printing operator: p 	
Arithmetic operators: +, -, *, /, %, ^ 	

% performs remainder operation. 	
^ performs exponentiation. (e.g., 2^4 = 16). You don't need to implement negative

exponent. 	
Terminating operator: q 	

To make the assignment tractable in assembly programming, we make some simplifying
assumptions: 	

- You can assume all operands are 32-bit signed integers. 	
- The result of an arithmetic operation is in the range of a 32-bit signed integer. 	
- You do not need to handle an overflow/underflow. That is, it is OK not to handle it

correctly even if the result of an operation exceeds the range of a 32-bit signed integer. 	
- You can assume that each input line has only 1 operand/operator. 	
- You do not need to handle input errors (but your program should not crash with invalid

input). See below for more detail on error handling. 	

You might want to use esp and ebp registers to simulate the stack in the main function. 	

We are providing a	startup	file	which contains the pseudo-code of dc.s file. Please go through
the pseudo-code before you begin writing the program. It is acceptable to use global (i.e. bss
section or data section) variables in mydc.s . Please make sure that you create your own function
to implement the power (^) arithmetic operator. In dc , negative numbers can be added by pre-
appending '_' symbol to the number. For example 	

_4

 3

 -

p

-7

 q 	

calculates "-4 - 3", prints the top value (p), and quit the program (q). 	

Part b: Advanced functions 	

The dc tool also provides additional operations that manipulate the input. You are required to
implement the following operators for this assignment. 	

Advanced
Operations 	

Short decription 	

f 	 Prints the contents of the stack in LIFO order. This is a useful command to use
if the user wants to keep track of the numbers he/she has pushed in the stack. 	

c 	 Clears the contents of the stack. 	

d 	 Duplicates the top-most entry of the stack and pushes it in the stack. 	

r 	 Reverses the order of (swaps) the top two values on the stack. 	

Please note that 'f' does not pop out any numbers out of the stack. The following example run of
dc shows how a combination of different dc operators can be used: 	

53

48

35

+

+

343223

43

56

76

35

98

1

f

1

98

35

76

56

43

343223

136

q 	

dc keeps on pushing the integers on the stack (53, 48, 35) till it encounters the first '+' operator. It
pops out 35 and 48 , computes the addition and inserts 83 back in the top of the stack. When the
second '+' is inserted, it repeats the same process with the integers 83 and 53 and inserts back 136
in the empty stack. Later when 'f' is entered, dc prints out all the contents of the stack in LIFO
order. 	

The following self-explanatory example shows how one can use 'd' in dc 	

4

d

*

p

16

q 	

Finally, 'r' is used to reverse the order of (swaps) the top two values on the stack as is shown in
the example below: 	

4

8

f

8

4

r

f

4

8

q 	

Error Handling 	

You are required to implement basic error handling and ensure that your program does not crash
with any given input (except for one case: it is OK to crash if dc has to divide by 0). Your

program should ignore those input values that have mixed alphanumeric characters. You should
check whether the stack has at least two operands for +, -, *, /, %, ^ operations. In case there are not
enough operands, dc should print out ' dc: stack empty ' to standard output. For p, d, r operators, dc
should again print ' dc: stack empty ' if the stack does not contain at least one operand (two for r).
For all other operators, dc should do nothing if the stack is empty. 	

Logistics 	

Develop on lab machines. Use emacs to create source code. Use gdb to debug. 	

Do not use a C compiler to produce any of your assembly language code. Doing so would be
considered an instance of academic dishonesty. Instead produce your assembly language code
manually. 	

We encourage you to develop "flattened" pseudo-code (as described in precepts) to bridge the
gap between the given pseudo-code and your assembly language code. Using flattened pseudo-
code as a bridge can eliminate logic errors from your assembly language code, leaving only the
possibility of translation errors. 	

We also encourage you to use your flattened pseudo-code as comments in your assembly
language code. Such comments can clarify your assembly language code substantially. 	

Your submission need to include the following files: 	

Your mydc.s file. 	

	

Grading 	

As always, we will grade your work on quality from the user's and programmer's points of view.
To encourage good coding practices, we will deduct points if gcc209 generates warning messages. 	

Comments in your assembly language programs are especially important. Each assembly
language function -- especially the main function -- should have a comment that describes what
the function does. Local comments within your assembly language functions are equally
important. Comments copied from corresponding "flattened" C code are particularly helpful. 	

Your assembly language code should use .equ directives to avoid "magic numbers." In particular,
you should use .equ directives to give meaningful names to: 	

Enumerated constants, for example: .equ TRUE, 1 . 	
Parameter stack offsets, for example: .equ OADDEND1, 8 . 	
Local variable stack offsets, for example: .equ UICARRY, -4 . 	
Stack offsets at which callee-save registers are stored, for example: .equ EBXOFFSET, -4 . 	

