[bookmark: _GoBack]Style:
Style: Names
1. Use descriptive names for globals, short names for locals (3). 2. Be consistent (4).
3. Use active names for functions (4).
4. Be accurate (4). 
Style: Expressions and Statements
5. Indent to show structure (6).
6. Use the natural form for expressions (6). 7. Parenthesize to resolve ambiguity (6).
8. Break up complex expressions (7).
9. Be clear (7).
10. Be careful with side effects (8). 
Style: Consistency and Idioms
11. Use a consistent indentation and brace style (10). 12. Use idioms for consistency (11).
13. Use else-ifs for multi-way decisions (14). 
Style: Function Macros
14. Avoid function macros (17).
15. Parenthesize the macro body and arguments (18). 
Style: Magic Numbers
16. Give names to magic numbers (19).
17. Define numbers as constants, not macros (20).
18. Use character constants, not integers (21).
19. Use the language to calculate the size of an object (22). 
Style: Comments
20. Don't belabor the obvious (23).
21. Comment functions and global data (24). 22. Don't comment bad code, rewrite it (25). 23. Don't contradict the code (25).
24. Clarify, don't confuse (26). 

These additional rules apply: 
Names : You should use a clear and consistent style for variable and function names. One example of such a style is to prefix each variable name with characters that indicate its type. For example, the prefix c might indicate that the variable is of type char , i might indicate int , pc might mean char* , ui might mean unsigned int , etc. But it is fine to use another style -- a style which does not include the type of a variable in its name -- as long as the result is a readable program. 
Line lengths : Limit line lengths in your source code to 72 characters. Doing so allows us to print your work in two columns, thus saving paper. 
Comments : Each source code file should begin with a comment that includes your name, the number of the assignment, and the name of the file. 
Comments : Each function should begin with a comment that describes what the function does from the caller's point of view. The function comment should: 
Explicitly refer to the function's parameters (by name) and the function's return value. 
State what, if anything, the function reads from standard input or any other stream, and what, if anything, the function writes to standard output, standard error, or any other stream. 
State which global variables the function uses or affects. 
Appear in both the interface (.h) file for the sake of the clients of the function and the implementation (.c) file for the sake of the maintainers of the function. 
Comments : Each structure type definition and each structure field definition should have a comment that describes it. 
Comments : The interface of each data structure should contain a comment that describes what an object of that type is. It would be reasonable to place that comment adjacent to the definition of the opaque pointer. 
