
46415
Structural Analysis and Design Optimization

of Wind Turbine Blades

Mini-Project 2: Optimum Blade

(2 page report is due on the 13th of June 2018 at 13.00)

The 46415 teaching team ∗

June 7, 2018
DTU Wind Energy

1. Introduction

Mini-Project 2 builds on Mini-Project 1 introducing the following changes and new con-
cepts:

• A 3D beam finite element model is now used.

• The thin-walled ellipse is added to the cross section as a simple representation of the
airfoil.

• The wall thickness e of the ellipse is added as design variable.

• A edgewise bending loadcase is added.

• Eigenfrequency constraints are added.

2. Optimization Problem

The considered blade design optimization now reads

∗Contact: Mathias Stolpe. E-mail: matst@dtu.dk

1

Figure 1: Cross section of section i.

minimize
a,t,e ∈ RN

m(a, t, e)

subject to δ(a, t, e) ≤ δmax

εi(ai, ti, ei) ≤ εmax i = 1, . . . , N
ηi(ai, ti) ≤ ηmax i = 1, . . . , N
fmin
j ≤ fj(a, t, e) ≤ fmax

j j = 1, . . . , k

amin
i ≤ ai ≤ amax

i i = 1, . . . , N
tmin
i ≤ ti ≤ tmax

i i = 1, . . . , N
emin
i ≤ ei ≤ emax

i i = 1, . . . , N

where m(a, t, e) is the mass of the blade and a = [a1, . . . , aN]T , t = [t1, . . . , tN]T and
e = [e1, . . . , eN]T are the design variables. ai is the cap width at section i, ti is the cap
thickness at section i and ei is the thickness of the ellipse at section i, as shown in Figure 1.
The tip displacement δ(a, t, e), the bending strain εi(ai, ti, ei) in each section and the the
buckling coefficient ηi(ai, ti) in each section must be smaller or equal to given values. The
eigenfrequencies of the blade are constrained by an upper and lower limit. N is the number
of sections and k is the number of eigenfrequency constraints.

3. Analysis

The theory underlying the functions used for the analysis of the structural response of
the beam are presented in here. The subsections mimic the same structure adopted in
the Matlab implementation, i.e., analysis of cross section properties in compute_csprops,
assembly of the cross section constitutive matrices in compute_constitutive, assemble
of the beam finite element model in compute_beam, and solve the beam finite element
equations in compute_beam_solution.

3.1. Assumptions and Parameters

Is is assumed that the caps of the box girder and the ellipse representing the airfoil are made
from unidirectional plies and triaxial plies, respectively. The effective material properties
of the unidirectional and triaxial plies are given in Table 1. It may again be assumed that
the plies are available in any thickness, so the cap thickness ti and the thickness of the
ellipse ei can be treated as a continuous variables.

2

Figure 2: Thinwalled ellipse for definition of cross section properties.

The height h(z), the chord length c(z), and the bending moments Mx(z) and My(z) are
described by given spline curves, which can be loaded into Matlab using the command
load(’splines’). The splines are also defined in Appendix A. The first derivative of
the spline curves describing bending moments yields the shear force, the second derivative
yields the distributed load (force per length).

The box girder is partitioned into N = 20 sections of equal length ∆z. Table 1 lists a
number of model parameters.

3.2. Cross Section Stiffness and Mass Properties

The cross section stiffness and mass properties are discussed in this section. See the
function compute_csprops for a Matlab implementation of the theory presented here.

3.2.1. Area

The total area is the sum of the area of the caps and ellipse. The evaluation of the area
of the caps has been presented in Mini-project 1. The area of the thin-walled ellipse with
constant wall thickness t shown if Figure 2 is [1, Table A.1/26]:

Aellipse = πt(a+ b)

[
1 +K1

(
a− b
a+ b

)2
]

where (1)

K1 = 0.2464 + 0.002222

(
a

b
+
b

a

)
. (2)

Note that the definition of a and t in Figure 2 differs from the global definition in Figure 1.
The total area is given by

A = Acaps +Aellipse (3)

3.2.2. Mass per unit length

The total mass per unit length ms is the sum of the contributions from the caps and ellipse
and is thus given as

ms = ms,caps +ms,ellipse = ρuniaxAcaps + ρtriaxAellipse (4)

3

Material Data: Uniax
E1 42 GPa Young’s modulus in 1-direction
E2 10 GPa Young’s modulus in 2-direction
G12 4 GPa In-plane shear modulus
ν12 0.28 Poisson ratio 12
ρ 1950 kg/m3 Mass density

Material Data: Triax
E1 22 GPa Young’s modulus in 1-direction
E2 15 GPa Young’s modulus in 2-direction
G12 9.5 GPa In-plane shear modulus
ν12 0.45 Poisson ratio 12
ρ 1845 kg/m3 Mass density

Geometry of the blade
L 89.166 m Blade length measured from r = 0 to r = rmax

h h(z) Height of the profile: defined by spline function height spline

or Appendix A
c c(z) Chord length: defined by spline function chord spline

or Appendix A
N 20 Number of sections

Load
Mx Mx(z) Flapwise bending moment:

defined by spline function moment x spline or Appendix A
My My(z) Edgewise bending moment:

defined by spline function moment y spline or Appendix A

Design variable bounds
amin 0.1 m Lower bound for cap width
amax amax(z) Upper bound for cap width: Piecewise linear function

through points (0, 1.0), (40, 1.0), (89.166, 0.3)
tmin 0.01 m Lower bound for cap thickness
tmax 0.1 m Upper bound for cap thickness
emin 0.001 m Lower bound for ellipse thickness
emax 0.02 m Upper bound for ellipse thickness

Constraints
δmax 16 m Maximum allowed tip displacement
εmax 0.0045 Maximum allowed strain
ηmax 0.5 Maximum allowed buckling coefficient
fmin
1 0.4 Minimum allowed first eigenfrequency
fmax
1 0.6 Maximum allowed first eigenfrequency

Accuracy of the optimization solver
εd 1× 10−6 Optimality tolerance
εr 1× 10−6 Constraint violation tolerance

Table 1: Model parameters.

4

3.2.3. Moment of inertia

The second moment of area Ix of the thin-walled ellipse with constant wall thickness t
shown if Figure 2 is [1, Table A.1/26]:

Ix,ellipse =
π

4
ta2(a+ 3b)

[
1 +K2

(
a− b
a+ b

)2
]

+
π

16
t3(3a+ b)

[
1 +K3

(
a− b
a+ b

)2
]

(5)

K2 = 0.1349 + 0.1279
a

b
− 0.01284

(a
b

)2
(6)

K3 = 0.1349 + 0.1279
b

a
− 0.01284

(
b

a

)2

(7)

For Iy,ellipse interchange a and b in the expressions for Ix,ellipse, K2 and K3.

The second mass moment of inertia is obtained as

Ixx = ρIx and Iyy = ρIy. (8)

Consequently, the total second mass moment of inertia is given as

Ixx = Ixx,caps + Ixx,ellipse = ρuniaxIx,caps + ρtriaxIx,ellipse (9)

Iyy = Iyy,caps + Iyy,ellipse = ρuniaxIy,caps + ρtriaxIy,ellipse (10)

3.2.4. Longitudinal Stiffness

The longitudinal stiffness of the beam is henceforth referred to as EA. It is obtained as
the sum of the longitudinal stiffness of the caps and ellipse and is given as

EA = E1,uniaxAcaps + E1,triaxAellipse (11)

where Aellipse is defined in (1).

3.2.5. Shear Stiffness

As a simplification both shear correction factors of the ellipse are assumed to be constant
and identical:

kellipse = kx,ellipse = ky,ellipse = 0.53 . (12)

The shear stiffness of the ellipse is:

kxGAellipse = kyGAellipse = kellipse G12,triax Aellipse (13)

As the shear webs of the box girder are not included in the model, it is not possible
to compute a realistic shear stiffness for the box girder. Therefore, a very high value
is assigned to the shear stiffness of the caps in x- and y-direction, in fact turning the
Timoshenko beam model into a Euler-Bernoulli beam model.

5

Note that the shear stiffness of a cross section cannot be computed as the sum of the shear
stiffnesses of parts of the cross section. Formally, the respective cross section stiffness
properties of the caps and the ellipse are added in the Matlab code to compute the “total”
cross section stiffness properites. In the case of the shear stiffness this does not matter,
because of the assumptions regarding the shear stiffness of the caps described above.

3.2.6. Bending Stiffness

The bending stiffness of the beam is the sum of the bending stiffness of the caps and the
bending stiffness of the ellipse.

The bending stiffness around the x and y axis of the cross section is henceforth referred
to as EIx and EIy, respectively. It is obtained as the sum of the bending stiffness of the
caps and ellipse and is given as

EIx = E1,uniaxIx,caps + E1,triaxIx,ellipse (14)

EIy = E1,uniaxIy,caps + E1,triaxIy,ellipse (15)

3.2.7. Torsional Stiffness

The torsional stiffness constant K of the thin-walled ellipse with constant wall thickness
t shown if Figure 2 is [1, Table 10.1/13]:

Kellipse =
4π2t

[(
a− t

2

)2 (
b− t

2

)2]
U

(16)

U = π(a+ b− t)
[
1 + 0.258

(a− b)2

(a+ b− t)2

]
(17)

As a simplification the contribution of the caps to the torsional stiffness of the beam is
neglected and thus the torsional stiffness GK is given by

GK = G12,triaxKellipse (18)

Note that the torsional stiffness of a cross section (like the shear stiffness) cannot be
computed as the sum of the torsional stiffnesses of parts of the cross section. Formally,
the respective cross section stiffness properties of the caps and the ellipse are added in the
Matlab code to compute the “total” cross section stiffness properites. In the case of the
torsional stiffness this does not matter, because the torsional stiffness of the caps is set to
zero in the Matlab code.

3.3. Cross Section Stiffness and Mass Matrix

It is assumed that the load application point, the elastic center, the mass center, and the
position of the beam finite element node coincide at each cross section. Moreover, all
relevant cross section properties are determined with respect to this position.

6

For a linear elastic beam there exists a linear relation between the cross section generalized

forces T and moments M in θ =
[
TTMT

]T
, and the resulting strains τ and curvatures

κ in ψ =
[
τTκT

]T
. This relation is given in its stiffness form as Ksψ = θ, where Ks

is the 6 × 6 cross section stiffness matrix. In the most general case, considering material
anisotropy and inhomogeneity, all the 21 stiffness parameters in Ks may be required to
describe the deformation of the cross section. In the current project, the entries of Ks are
determined as

Ks =

kxGA 0 0 0 0 0
0 kyGA 0 0 0 0
0 0 EA 0 0 0
0 0 0 EIx 0 0
0 0 0 0 EIy 0
0 0 0 0 0 GK

 (19)

The 6 × 6 cross section mass matrix Ms relates the linear and angular velocities in φ
to the generalized inertial linear and angular momentum in γ through φ = Msγ. The
coefficients of Ms for the general case are

Ms =

ms 0 0 0 0 −msym
0 ms 0 0 0 msxm
0 0 ms msym −msxm 0
0 0 msym Ixx −Ixy 0
0 0 −msxm −Ixy Iyy 0

−msym msxm 0 0 0 Ixx + Iyy

 (20)

where ms is the mass per unit length, Ixx and Iyy are the mass moment of inertia with
respect to x and y, respectively, and Ixy is the product of inertia. The off-diagonal terms
are due to the offset between the position of the cross section reference center and the
mass center mc = (xm, ym). In this project the mc = (0, 0 and thus the cross section mass
matrix is given as

Ms =

ms 0 0 0 0 0
0 ms 0 0 0 0
0 0 ms 0 0 0
0 0 0 Ixx 0 0
0 0 0 0 Iyy 0
0 0 0 0 0 Ixx + Iyy

 (21)

The theory presented in this section is implemented in compute_constitutive in Mat-
lab.

3.4. Beam Finite Element Analysis

3.4.1. Beam Finite Element Stiffness and Mass Matrix

The beam finite element stiffness and mass matrix for element b are given by

Kb =

∫ Lb

0
BT

b KsBb dz and Mb =

∫ Lb

0
NT

b MsNb dz (22)

7

where Lb is the length of element b. The beam finite element stiffness matrix Kb for
element b is given in function of Bb = B(Nb) where B is the strain-displacement relation
which is a function of Nb, the finite element shape function matrix. The cross section
stiffness and mass matrices Ks and Ms, respectively, have been defined in the previous
section. The global beam stiffness and mass matrix K and M are defined as

K =

nb∑
b=1

Kb and M =

nb∑
b=1

Mb (23)

where nb is the number of elements in the beam finite element assemblage, and Kb and
Mb are the beam finite element stiffness and mass matrix for element b, respectively. The
summation refers to the typical finite element assembly. The cross section stiffness and
mass matrix, Ks and Ms, are defined in (19) and (21), respectively.

The theory presented in this section is implemented in compute_beam in Matlab.

3.4.2. Displacement Solution

The deformation u resulting from the loads f is the solution to the following linear system
of equations

Ku = f (24)

where K is the beam finite element stiffness matrix defined in (23).

Implementation notes: In Matlab the solution to a system like the one above is obtained
by writing u=K\f. The theory presented in this section is implemented in compute_beam_solution.

3.4.3. Cross Section Forces and Moments

The cross section forces T and moments M are determined based on the displacement solu-
tion obtained from (24). For the four node beam finite element from FRANS, the forces and
moments at each element of the beam finite element assembly fe = [Te,1 Me,1 ... Te,4 Me,4]
are determined as

fe = Keue (25)

where ue are the entries of the displacement vector u which are associated with the element
e, and Te,k and Me,k are the cross section forces and moments, respectively, at node k of
element e. The vector of cross section strains and curvatures are obtained using the cross
section constitutive relation in its compliance form, i.e.,

Ψ = K−1s fe (26)

The theory presented in this section is implemented in compute_beam_solution.

8

3.4.4. Bending Strains and Buckling Analysis

The bending strains and buckling coefficient are analyzed using the same routines as in
Mini-project 1. The only difference is that the curvatures in κ are determined from the
beam finite element assembly as detailed in Section 3.4.3. Also, for buckling calculations,
the thickness of the caps and ellipse are considered.

Implementation notes: Note that the cross section forces and moments are analyzed at
the node closest to the root of the blade as this is the node at which the bending moment is
higher. As a result the strains measured using the beam finite element are slightly higher
than those measured in Mini-project 1 in which the cross section forces and moments were
measured at the center of the element.

3.4.5. Eigenfrequency solution

The finite element form of the beam structural eigenvalue problem is(
K− ω2

fM
)
vf = 0, ∀f = 1, ..., nd (27)

where nd is the number of degrees of freedom associated with the finite element stiffness
and mass matrices, K and M, respectively. The problem above yields the eigenfrequencies
ω = {ω1, ..., ωnd

} associated with the eigenvectors v = {v1, ...,vnd
}.

Implementation notes: In the current implementation the eigenfrequencies in ω are
given in ascending order of magnitude, i.e., ω1 ≤ ω2 ≤ ... ≤ ωnd

. The eigenvectors are
ordered accordingly and are already mass normalized. The theory presented in this section
is implemented in compute_beam_solution.

4. Sensitivity analysis

4.1. Cross Section Stiffness and Mass Matrix

The gradients of the cross section stiffness matrix are given by

∂Ks(x)

∂xi
=

∂kxGA(x)
∂xi

0 0 0 0 0

0
∂kyGA(x)

∂xi
0 0 0 0

0 0 ∂EA(x)
∂xi

0 0 0

0 0 0 ∂EIx(x)
∂xi

0 0

0 0 0 0
∂EIy(x)

∂xi
0

0 0 0 0 0 ∂GK(x)
∂xi

(28)

9

which resolves to the calculation of the gradients of each of the entries. The gradient of
the cross section mass matrix is given by

∂Ms(x)

∂xi
=

∂ms(x)
∂xi

0 0 0 0 0

0 ∂ms(x)
∂xi

0 0 0 0

0 0 ∂ms(x)
∂xi

0 0 0

0 0 0 ∂Ixx(x)
∂xi

0 0

0 0 0 0
∂Iyy(x)

∂xi
0

0 0 0 0 0 ∂Ix(xx)
∂xi

+
∂Iyy(x)

∂xi

(29)

Implementation Notes: The gradients of each of the entries has been derived in the
Maple file accompanying the code.

4.2. Finite Element Stiffness and Mass Matrix

The sensitivities of the global beam finite element stiffness matrix K are obtained through
differentiation of K in (23) to yield

∂K(x)

∂xi
=

nb∑
b=1

∫ Lb

0
BT

b

∂Ks(x)

∂xi
Bb dz (30)

The gradient of the cross section stiffness matrix Ks is described in Section 4.1. The
gradients of the global beam finite element mass matrix M(x) are obtained through dif-
ferentiation of M in (23) and defined as

∂M(x)

∂xi
=

nb∑
b=1

∫ Lb

0
NT

b

∂Ms(x)

∂xi
Nb dz (31)

Implementation Notes: Note that the same routines used for computing the element
stiffness matrices K and M can be used to build the gradients by simply providing ∂Ks(x)

∂xi

and ∂Ms(x)
∂xi

instead of Ks and Ms.

4.2.1. Displacement

The solution to the linear system of equations in (24) yields the displacements u. The
gradients of the displacement with respect to the design variables for the case of design
independent loads is given by

K
∂u

∂x
= −∂K

∂x
u (32)

which is obtained after applying the chain rule to (24).

10

Implementation Notes: Similarly to the displacement solution in (24), the gradients ∂u
∂x

are obtained as dudx = - K \ (dKdx*u). Note that this corresponding to solving the
system for as many right hand sides as number of design variables. The procedure can be
implemented efficiently by considering elementwise computations of the right hand side.

4.2.2. Eigenfrequencies

The solution to the structural eigenvalue problem in (27) yields the eigenfrequencies and
eigenvectors ω = {ω1, ..., ωnd

} and v = {v1, ...,vnd
}, respectively. It is assumed that the

eigenvectors are mass-normalized such that

vT
p M(x)vq = δpq, ∀p, q = 1, ..., nd.

where nd is the number of degrees of freedom, and δpq is the Kronecker delta such that
δpq = 1 if p = q and δpq = 0 otherwise. The gradient of a single eigenfrequency ωp with
respect to the design variable xi is given by

∂ω2
p(x)

∂xi
= vT

p

(
∂K(x)

∂xi
− ω2

p(x)
∂M(x)

∂xi

)
vp (33)

Implementation Notes: Note that in order to solve the eigenvalue problem above the
boundary conditions on K and M are enforced by removing the rows and columns cor-
responding to the d.o.f. where the beam is clamped. This is different from the approach
employed for enforcing the boundary conditions when solving for the displacements.

5. Implementation

The focus of this section is on the description of the data necessary for running the
optimization procedure, and the output from the structural analysis functions. A series
of auxiliary symbols and parameters are described in Table 2.

Name Size Type Description

N (1 × 1) scalar Number of beam finite elements.
ndof (1 × 1) scalar Number of degrees of freedom (d.o.f.) in the finite ele-

ment assembly.
np (1 × 1) scalar Number of load cases.
nbc (1 × 1) scalar Number of d.o.f. which are constrained at the bound-

ary.
nf (1 × 1) scalar Number of frequencies constraints considered through-

out the optimization.
nm (1 × 1) scalar Number of distinct materials considered.

Table 2: Symbols used for describing the fields in Tables 3 and 4

11

5.1. Input

The input stored in the structure problem, required to run the optimization, is described
in Table 3.

Name Size Type Description

problem. (1 × 1) structure Structure with problem definition, input, etc.

.info. (1 × 1) structure Structure with user provided input and other
parameters determined based on input and re-
quired for the optimization.

.beam length (1 × 1) scalar Length of the beam

.num sec (1 × 1) scalar Number of sections

.delta z (1 × 1) scalar Distance between sections or length of each
beam finite element.

.z eval (N × 1) array Position of points where cross section height and
chord length are evaluated.

.z nodes ((N + 1) × 1) array Position of the nodes of the beam finite ele-
ments.

.height spline. (1 × 1) structure Parameters associated with the spline defining
the lengwise distribution of cross section height.

.chord spline. (1 × 1) structure Parameters associated with the spline defining
the lengwise distribution of cross section chord.

.moment x spline. (1 × 1) structure Parameters associated with the spline defining
the lengwise distribution of cross section bend-
ing moment Mx.

.moment y spline. (1 × 1) structure Parameters associated with the spline defining
the lengwise distribution of cross section bend-
ing moment Mx.

.shearforce y spline. (1 × 1) structure Parameters associated with the spline defining
the lengwise distribution of cross section shear
forces Ty.

.distributed load y spline. (1 × 1) structure Parameters associated with the spline defining
the lengwise distribution of loads in the y direc-
tion.

.shearforce x spline. (1 × 1) structure Parameters associated with the spline defining
the lengwise distribution of cross section shear
forces Tx.

.distributed load x spline. (1 × 1) structure Parameters associated with the spline defining
the lengwise distribution of loads in the x direc-
tion.

.form (1 × 1) string String defining the form of the spline.

.breaks (1 × nc) array Longitudinal position of the control points.

.coefs (nc × 4) array Coefficients of the control points.

.pieces (1 × 1) scalar Number of pieces in each spline.

.order (1 × 1) scalar Order of spline polynomial.

.saved solution. (1 × 1) structure Solution saved in the last iteration of the opti-
mization process.

.initial solution. (1 × 1) structure Solution obtained based on the initial design
whose input is provided by the user.

.final solution. (1 × 1) structure Solution obtained based on the final design re-
sulting from the optimization process.

.deflection (ndof × 1) array Displacement solution at each node of the beam
finite element model for all d.o.f..

.tip disp (1 × 1) scalar Displacement at the tip of the blade in the flap-
wise or y direction.

.strain (N × 2) array Maximum strains at each of the sections of the
blade.

12

.eta (N × 1) array Buckling coefficient at each section of the blade.

.freq (nf × 1) array Magnitude of the eigenfrequencies.

.m (1 × 1) scalar Total mass of the blade.

.iteration (1 × 1) scalar Number of current iteration.

.firstorderopt (1 × 1) scalar Magnitude of th first order optimality criteria at
current iteration.

.materialdata. (1 × nm) structure Material properties for the nm considered mate-
rial.

.E1 (1 × 1) scalar Young’s modulus in the 1-direction.

.E2 (1 × 1) scalar Young’s modulus in the 2-direction.

.nu12 (1 × 1) scalar Poisson’s ration 12.

.G12 (1 × 1) scalar In -plane shear modulus.

.rho (1 × 1) scalar Mass density.

.name (1 × 1) string Name or label of material.

.constraints. (1 × 1) structure Magnitude of constraints.

.max tip disp (1 × 1) scalar Maximum value of tip displacement.

.max buckling factor (1 × 1) scalar Maximum buckling factor.

.max strain (1 × 2) array Maximum allowed strain at caps and ellipse.

.max freq (1 × 2) array Upper bound on the eigenfrequencies.

.min freq (1 × 2) scalar Lower bound on the eigenfrequencies.

.options. (1 × 1) structure Options associated with plotting and optimiza-
tion algorithm.

.plotting. (1 × 1) structure Options associated with plotting.

.activate (1 × 1) axes Flag to activate the plotting throughout the op-
timization.

.plotsplines (1 × 1) axes Flag to plot the input splines.

.axes. (1 × 1) structure Axes structure containing information on the
properties of the plots.

.optimizer. (1 × 1) structure Options associated with the optimization algo-
rithm.

optimality tol (1 × 1) scalar Setting optimality tolerance.
constr viol tol (1 × 1) scalar Setting constraint violation tolerance.
check derivatives (1 × 1) scalar Turning on/off derivative check using finite dif-

ferences (useful for debugging sensititivities).

.varbounds. (1 × 1) structure Bounds on design variables.

.lb. (a, t, e) (N × 1) array Setting lower bound values.

.ub. (a, t, e) (N × 1) array Setting upper bound values.

.initial design. (a, t, e) (N × 1) array Defining initial values for design variables a, t,
and e.

.load. (1 × 1) structure Setting the magnitude of the loads acting on the
beam finite element model.

.M x (N × 1) array Bending moment Mx around the x-axis.

.M y (N × 1) array Bending moment My around the y-axis.

.nodal forces x ((N + 1) × 1) array Nodal forces acting on the beam finite element
model in the x-direction.

.nodal forces y ((N + 1) × 1) array Nodal forces acting on the beam finite element
model in the y-direction.

.geometry. (h, c) (N × 1) array Setting the geometrical parameters for section
height h, and chord c.

.scaling. (1 × 1) structure Scaling parameters.

.char a (1 × 1) scalar Characteristic magnitude of cap width a.

.char t (1 × 1) scalar Characteristic magnitude of cap thickness t.

.char e (1 × 1) scalar Characteristic magnitude of ellipse thickness e.

.char m (1 × 1) scalar Characteristic magnitude of total blade mass m.

.char disp (1 × 1) scalar Characteristic magnitude of blade tip displace-
ment.

.char strain (1 × 1) scalar Characteristic magnitude of strains.

13

.char freq (1 × 1) scalar Characteristic magnitude of eigenfrequencies.

.frans. (1 × 1) structure FRANS specific structure with parameters re-
quired to assemble the beam finite element
model.

.ne 1d (1 × 1) scalar Number of elements in the beam finite element
assembly.

.nn 1d (1 × 1) scalar Number of nodes in the beam finite element as-
sembly.

.el 1d (N × 5) scalar Element connectivity list.

.nl 1d ((3×N + 1)×
5)

array List of nodal positions.

.bc 1d (nb × 3) array Boundary conditions of the beam finite element
model.

.f 1d (np × 5) array Load vector of the beam finite element model.

.nnpe 1d (1 × 1) scalar Number of nodes per element in the beam finite
element assembly.

.mdim 1d (1 × 1) scalar Number of degrees of freedom per element in the
beam finite element assembly.

.nb 1d (1 × 1) scalar Number of constrained degrees of freedom.

.np 1d (1 × 1) scalar Number of loads applied in the beam finite ele-
ment model.

.nlc 1d (1 × 1) scalar Number of load cases.

.pr 1d (12 ×N) array Nodal positions order for beam finite element
assemblage.

.edof 1d (24 ×N) array Degrees of freedom of each element for mapping
from element to global.

.GQ (12 × 2 × 11) array Weights for Gauss quadrature.

Table 3: Description of all the fields included in the structure problem containing the parameters necessary
to solve the optimization problem in Matlab.

5.2. Analysis Functions

The analysis of the structural response of the blade is based on the code FRANS. This is
a beam finite element code developed at DTU Wind Energy for the analysis of straight
beams whose section properties are described by a 6x6 cross section stiffness and mass
matrix. FRANS is a linear elastic analysis tool based on four node beam elements with
cubic Lagrangian shape functions.

The analysis of the total mass of the blade in compute_objective which is used as the
objective function is relatively simple. Most of the work is carried out for the calculation
of the constraints in the function compute_constraints. Here there are four functions
which compose the analysis part, namely:

• [csprops] = compute_csprops(problem, design) - Function for evaluation
of the cross section stiffness mass and stiffness properties and its gradients.

• [constitutive] = compute_constitutive(problem, csprops) - Function to
assemble the cross section constitutive stiffness and mass matrix and its gradients.

• [beam] = compute_beam(problem, constitutive) - Function to assemble the
beam finite element stiffness and mass matrix and calculate the gradients of the el-
ement stiffness and mass matrices.

14

• [solution] = compute_beam_solution(problem, beam, constitutive) - Func-
tion to calculate the solution to the beam finite element analysis displacement and
eigenvalue problems.

The content of each of the structures is described in detail in the next section. These results
are the building blocks for the calculation of the gradients of the constraint functions.

5.2.1. Output of Analysis Functions

The output from the analysis of the structural response of the beam is summarized in
Table 4.

Name Size Type Description

csprops. (1 × 1) structure Cross section stiffness and mass properties.
caps. (1 × 1) structure Cross section stiffness and mass properties of the caps.
ellipse. (1 × 1) structure Cross section stiffness and mass properties of the el-

lipse.
total. (1 × 1) structure Cross section stiffness and mass properties of the caps

and ellipse added together.
.A (N × 1) array Cross section area.
.Ix (N × 1) array Second area moment of inertia around x.
.Iy (N × 1) array Second area moment of inertia around y.
.K (N × 1) array Torsional constant.
.EA (N × 1) array Axial stiffness.
.kGA (N × 1) array Shear stiffness.
.EIx (N × 1) array Bending stiffness around x.
.EIy (N × 1) array Bending stiffness around y.
.GK (N × 1) array Torsional stiffness.
.ms (N × 1) array Cross section mass per unit length.
.me (N × 1) array Mass of beam finite element.
.dt. (A, Ix, . . .) (1 × 1) structure Gradients of cross section properties with respect to t

(same fields (A, Ix, Iy, . . .) as csprops.total).
.da. (A, Ix, . . .) (1 × 1) structure Gradients of cross section properties with respect to a

(same fields (A, Ix, Iy, . . .) as csprops.total).
.de. (A, Ix, . . .) (1 × 1) structure Gradients of cross section properties with respect to e

(same fields (A, Ix, Iy, . . .) as csprops.total).

constitutive. (1 × 1) structure Cross section constitutive matrices
.Ks (6 × 6 ×N) array Cross section constitutive stiffness matrix.
.Ms (6 × 6 ×N) array Cross section constitutive mass matrix.
.da. (Ks, Ms) (1 × 1) structure Gradients of cross section constitutive matrices with

respect to a.
.dt. (Ks, Ms) (1 × 1) structure Gradients of cross section constitutive matrices with

respect to t.
.de. (Ks, Ms) (1 × 1) structure Gradients of cross section constitutive matrices with

respect to e.
.d*.Ks (6 × 6 ×N) array Gradient of cross section constitutive stiffness matrix.
.d*.Ms (6 × 6 ×N) array Gradient of cross section constitutive mass matrix.

beam. (1 × 1) structure Beam finite element assembly.
.K (ndof × ndof) array Global beam finite element stiffness matrix with bound-

ary conditions enforced by setting diagonal to unity and
remaining terms of rows an columns to zero.

.M (ndof × ndof) array Global beam finite element mass matrix with boundary
conditions enforced by setting diagonal to unity and
remaining terms of rows an columns to zero.

.p (ndof × np) array Global beam finite element load vector.

15

.eigK ((ndof−nbc)×
(ndof − nbc))

array Global beam finite element stiffness matrix with bound-
ary conditions enforced by removing the d.o.f. where
boundary conditions are applied.

.eigM ((ndof−nbc)×
(ndof − nbc))

array Global beam finite element mass matrix with bound-
ary conditions enforced by removing the d.o.f. where
boundary conditions are applied.

.da. (Ke, Me) (1 × 1) structure Gradients of beam finite element stiffness matrices with
respect to a.

.dt. (Ke, Me) (1 × 1) structure Gradients of beam finite element stiffness matrices with
respect to t.

.de. (Ke, Me) (1 × 1) structure Gradients of beam finite element stiffness matrices with
respect to e.

.d*.Ke (24 × 24 ×N) array Gradients of beam finite element stiffness matrices with
respect to e.

.d*.Me (24 × 24 ×N) array Gradients of beam finite element stiffness matrices with
respect to e.

solution. (1 × 1) structure Solutions to beam finite element analysis problem.
.u (ndof × 1) array Displacements at each node of the beam finite element

model.
.f (24 ×N) array Cross section forces and moments at each node of the

beam finite element model.
.eigfreq (10 × 1) array First 10 eigenfrequencies for the beam finite element

assembly sorted in ascending order.
.eigvec (ndof × 10) array First 10 eigenvectors for the beam finite element as-

sembly, mass normalized, and in the same order as the
eigenfrequencies.

Table 4: Description of all the fields included in the structures output by the analysis functions in Matlab.
The information contained in these structures are the building blocks for the implementation of
the gradients.

6. Mini-project tasks

In order to complete the mini-project please perform (at least) the following tasks. A
summary of the most important results must be included in the report.

• Download the Matlab program for solving the optimization problem from DTU
Inside.

• Study the description of the project and the Matlab code (basis for the final project).

• A small part of the program is missing and needs to be completed: The computation
of the gradients of the eigenfrequencies in analysis/compute_frequency.m

• Check your implementation of the gradients of the eigenfrequencies using the fi-
nite difference checks in fmincon. If necessary implement your own finite difference
checker of the user supplied gradients.

• Perform a sensitivity analysis on the lower and upper bounds on the frequency
constraints by solving a number of different problems. What happens to the optimal
design? What happens to the optimal mass?

16

• Perform the sensitivity analysis on the design driving constraints using the Lagrange
multipliers. Using the Lagrange multipliers, discuss what constraints and variable
bounds would have the greatest impact on the final design. Discuss in terms of
relative (i.e. varying constraints by ±1%) and absolute variations (i.e. varying
constraints by ±0.001 units) what constraints are driving the design. Which con-
straint is the objective most sensitive to? Pick the most sensitive constraint and
change the constraint bound by 10%, solve the optimization problem. Comment
on whether the objective (and design) improved as you expected it. How did your
lagrange multipliers change? How can this information be used in an engineering
design process.

References

[1] Warren C. Young and Richard G. Budynas. Roark’s Formulas for Stress and Strain.
McGraw-Hill, 2002.

17

Appendix A Splines describing geometrical properties and loading

Splines are functions defined piecewise by polynomials (see Figure 3). At the intersections
of two polynomial pieces, continuity conditions (e.g. n-times continuously differentiable)
are usually assigned in order to achieve a smooth curve.

A spline p(x) can be described in terms of its breaks ξ1, ξ2, . . . ξl and its polynomial coef-
ficients cji:

pj(x) =
k∑

i=1

(x− ξj)k−i cji j = 1, 2, . . . l , (34)

where l is the number of polynomial pieces and k is the number of coefficients in each
polynomial (k = 4 for a cubic spline). The polynomial pj(x) describes the spline in the
interval ξj ≤ x ≤ ξj+1.

In this project splines haven been used to describe bending moments (Mx(z), My(z)) and
geometrical properties (h(z), c(z)) as a function of the radial coordinate z.

Tables 5 to 8 display the breaks and polynomial coefficients of the splines used in this
project.

Putting together splines in Matlab

The example below demonstrates how a spline defined by its breaks and coefficients can
be put together in Matlab using the ppmak command.

breaks = [2.8000 4.8000 18.8310 27.1510 37.4240 63.6150 89.1660];

coefs = [

0.000 4.800 0.0000E+00 0.0000E+00 0.0000E+00 5.3800E+00;

4.800 18.000 7.1197E-04 -2.0874E-02 0.0000E+00 5.3800E+00;

18.000 35.000 -1.3286E-04 7.3198E-03 -1.7892E-01 3.3804E+00;

35.000 80.000 -3.2478E-06 5.4401E-04 -4.5231E-02 1.8015E+00;

80.000 89.166 -3.9380E-04 8.3219E-04 -1.6000E-02 5.7179E-01];

rel_thick_spline = ppmak(breaks ,coefs ,1);

Figure 3: Cubic spline approximating data.

18

ξ j
ξ j

+
1

c j
1

c j
2

c j
3

c j
4

j=
1

0
.0

0
0

4
.8

0
0

0
.0

0
0
0
E

+
0
0

0
.0

0
0
0
E

+
0
0

0
.0

0
0
0
E

+
0
0

5
.3

8
0
0
E

+
0
0

j=
2

4
.8

0
0

1
8
.0

0
0

7
.1

1
9
7
E

-0
4

-2
.0

8
7
4
E

-0
2

0
.0

0
0
0
E

+
0
0

5
.3

8
0
0
E

+
0
0

j=
3

1
8
.0

0
0

3
5
.0

0
0

-1
.3

2
8
6
E

-0
4

7
.3

1
9
8
E

-0
3

-1
.7

8
9
2
E

-0
1

3
.3

8
0
4
E

+
0
0

j=
4

3
5
.0

0
0

8
0
.0

0
0

-3
.2

4
7
8
E

-0
6

5
.4

4
0
1
E

-0
4

-4
.5

2
3
1
E

-0
2

1
.8

0
1
5
E

+
0
0

j=
5

8
0
.0

0
0

8
9
.1

6
6

-3
.9

3
8
0
E

-0
4

8
.3

2
1
9
E

-0
4

-1
.6

0
0
0
E

-0
2

5
.7

1
7
9
E

-0
1

Table 5: Spline describing the profile height h(z) in m as a function of the z-coordinate in
m.

19

ξ j
ξ j

+
1

c j
1

c j
2

c j
3

c j
4

j=
1

0
.0

0
0

8
.1

9
6

0
.0

0
0
0
E

+
0
0

0
.0

0
0
0
E

+
0
0

0
.0

0
0
0
E

+
0
0

5
.3

8
0
0
E

+
0
0

j=
2

8
.1

9
6

1
9
.9

5
5

-4
.6

1
3
0
E

-0
4

1
.0

4
2
3
E

-0
2

0
.0

0
0
0
E

+
0
0

5
.3

8
0
0
E

+
0
0

j=
3

1
9
.9

5
5

2
8
.0

1
2

9
.5

4
0
6
E

-0
5

-5
.8

5
0
2
E

-0
3

5
.3

7
6
9
E

-0
2

6
.0

7
1
1
E

+
0
0

j=
4

2
8
.0

1
2

3
8
.2

2
2

7
.9

4
3
1
E

-0
5

-3
.5

4
4
0
E

-0
3

-2
.1

9
2
6
E

-0
2

6
.1

7
4
5
E

+
0
0

j=
5

3
8
.2

2
2

5
5
.0

2
7

2
.4

2
4
7
E

-0
5

-1
.1

1
1
1
E

-0
3

-6
.9

4
5
2
E

-0
2

5
.6

6
5
7
E

+
0
0

j=
6

5
5
.0

2
7

7
0
.0

5
8

8
.5

9
7
6
E

-0
6

1
.1

1
3
2
E

-0
4

-8
.6

2
5
3
E

-0
2

4
.2

9
9
9
E

+
0
0

j=
7

7
0
.0

5
8

7
8
.1

5
9

4
.7

1
2
1
E

-0
6

4
.9

8
9
9
E

-0
4

-7
.7

0
8
0
E

-0
2

3
.0

5
7
8
E

+
0
0

j=
8

7
8
.1

5
9

8
5
.0

0
0

-4
.3

9
0
8
E

-0
4

6
.1

3
5
1
E

-0
4

-6
.8

0
6
7
E

-0
2

2
.4

6
8
6
E

+
0
0

j=
9

8
5
.0

0
0

8
6
.2

5
2

-1
.3

2
8
7
E

-0
3

-8
.3

9
8
3
E

-0
3

-1
.2

1
3
3
E

-0
1

1
.8

9
1
1
E

+
0
0

j=
1
0

8
6
.2

5
2

8
8
.6

5
9

-1
.4

7
6
0
E

-0
2

-1
.3

3
8
9
E

-0
2

-1
.4

8
6
1
E

-0
1

1
.7

2
3
4
E

+
0
0

j=
1
1

8
8
.6

5
9

8
8
.9

8
6

-6
.7

9
8
2
E

+
0
0

-1
.1

9
9
9
E

-0
1

-4
.6

9
7
0
E

-0
1

1
.0

8
2
1
E

+
0
0

j=
1
2

8
8
.9

8
6

8
9
.1

6
6

1
.0

4
3
6
E

+
0
1

-6
.7

8
0
9
E

+
0
0

-2
.7

2
3
5
E

+
0
0

6
.7

9
0
6
E

-0
1

Table 6: Spline describing the chord length c(z) in m as a function of the z-coordinate in
m.

20

ξ j
ξ j

+
1

c j
1

c j
2

c j
3

c j
4

c j
5

c j
6

j=
1

0
.0

0
0

7
0
.0

0
0

-6
.0

1
0
0
E

-0
4

5
.8

9
0
5
E

-0
2

3
.0

7
6
5
E

+
0
1

2
.5

7
3
4
E

-1
4

-6
.8

6
7
3
E

+
0
5

3
.9

1
4
9
E

+
0
7

j=
2

7
0
.0

0
0

8
0
.0

0
0

-1
.7

9
7
2
E

-0
2

-1
.5

1
4
5
E

-0
1

1
.7

8
1
0
E

+
0
1

6
.1

3
1
1
E

+
0
3

-2
.2

5
8
1
E

+
0
5

2
.0

3
4
4
E

+
0
6

j=
3

8
0
.0

0
0

8
7
.0

0
0

-2
.5

6
3
2
E

-0
1

-1
.0

5
0
1
E

+
0
0

-6
.2

2
0
2
E

+
0
0

6
.3

9
4
8
E

+
0
3

-9
.9

3
5
2
E

+
0
4

4
.0

3
9
3
E

+
0
5

j=
4

8
7
.0

0
0

8
9
.1

6
6

-3
.6

8
6
9
E

+
0
1

-1
.0

0
2
1
E

+
0
1

-1
.6

1
2
2
E

+
0
2

5
.0

7
6
3
E

+
0
3

-1
.5

2
5
7
E

+
0
4

1
.2

8
4
6
E

+
0
4

Table 7: Spline describing the bending moment Mx(z) in Nm as a function of the z-
coordinate in m.

21

ξ j
ξ j

+
1

c j
1

c j
2

c j
3

c j
4

c j
5

j=
1

0
.0

0
0

8
9
.1

6
6

-3
.2

9
0
4
E

-0
1

6
.0

4
9
4
E

+
0
1

0
.0

0
0
0
E

+
0
0

-5
.0

9
8
2
E

+
0
5

2
.3

3
7
3
E

+
0
7

Table 8: Spline describing the bending moment My(z) in Nm as a function of the z-
coordinate in m.

22

